思路点拨:三角函数的求值问题.关键是要找到已知和结论之间的联系.本题先要应用向量的有关知识及二倍角公式将已知条件化简.然后将所求式子的角向已知角转化. 查看更多

 

题目列表(包括答案和解析)

设x1和x2是方程x2+(t-3)x+(t2-24)=0的两个实根,定义函数f(t)=logm(x12+x22)(m>1),求函数y=f(t)的单调区间,并说明理由.

思路点拨:要想求函数y=f(t)的单调区间,首先要求函数y=f(t)的解析式及定义域.如果在整个定义域内函数不是单调的,那就要把定义域分成几个函数具有单调性的区间段,从而确定单调区间.

查看答案和解析>>

[例] 为了预防流感,某学校对教室用药

物消毒法进行消毒。已知药物释放过程中,室内每立方米空气中含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,yt的函数关系式为a为常数),如图所示,根据图中提供的信息,回答下列问题:

(Ⅰ)从药物释放开妈,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为                              

(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过             小时后,学生才能回到教室。

[思路点拨]根据题意,药物释放过程的含药量y(毫克)与时间t是一次函数,药物释放完毕后,yt的函数关系是已知的,由特殊点的坐标确定其中的参数,然后再由所得的表达式解决(Ⅱ)

查看答案和解析>>

为了预防流感,某学校对教室用药

物消毒法进行消毒。已知药物释放过程中,室内每立方米空气中含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,yt的函数关系式为a为常数),如图所示,根据图中提供的信息,回答下列问题:

(Ⅰ)从药物释放开妈,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为                               

(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过             小时后,学生才能回到教室。

[思路点拨]根据题意,药物释放过程的含药量y(毫克)与时间t是一次函数,药物释放完毕后,yt的函数关系是已知的,由特殊点的坐标确定其中的参数,然后再由所得的表达式解决(Ⅱ)

查看答案和解析>>

已知A(2,1)、B(3,5)、C(3,2),若=(λ∈R),试求λ为何值时,点M在第二象限?

思路点拨:要使得点M在第二象限,可以表示出点M的坐标,使其横坐标小于零,纵坐标大于零,使问题得到解决.

查看答案和解析>>

有四个关于三角函数的命题:
P1:?x∈R,sin2
x
2
+cos2
x
2
=
1
2

P2:?x、y∈R,sin(x-y)=sinx-siny;
P3:?x∈[0,π],
1-cos2x
2
=sinx;
P4:sinx=cosy?x+y=
π
2

其中假命题的是(  )
A、P1,P4
B、P2,P4
C、P1,P3
D、P2,P4

查看答案和解析>>


同步练习册答案