②求f(x)即求sinx.此处未知角x.已知角.而.∴可把x化成已知. 查看更多

 

题目列表(包括答案和解析)

(2007•奉贤区一模)已知:函数f(x)=
x
ax+b
(a,b∈R,ab≠0)
f(2)=
2
3
,f(x)=x
有唯一的根.
(1)求a,b的值;
(2)数列{an}对n≥2,n∈N总有an=f(an-1),a1=1;求出数列{an}的通项公式.
(3)是否存在这样的数列{bn}满足:{bn}为{an}的子数列(即{bn}中的每一项都是{an}的项)且{bn}为无穷等比数列,它的各项和为
1
2
.若存在,找出所有符合条件的数列{bn},写出它的通项公式,并说明理由;若不存在,也需说明理由.

查看答案和解析>>

已知:函数f(x)=
2x+3
3x
,数列{an}对n≥2,n∈N总有an=f(
1
an-1
),a1=1

(1)求{an}的通项公式.
(2)求和:Sn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1
(3)若数列{bn}满足:①{bn}为{
1
an
}
的子数列(即{bn}中的每一项都是{
1
an
}
的项,且按在{
1
an
}
中的顺序排列)②{bn}为无穷等比数列,它的各项和为
1
2
.这样的数列是否存在?若存在,求出所有符合条件的数列{bn},写出它的通项公式,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

精英家教网已知函数f(x)=
x2
x+m
的图象经过点(4,8).
(1)求该函数的解析式;
(2)数列{an}中,若a1=1,Sn为数列{an}的前n项和,且满足an=f(Sn)(n≥2),
证明数列{
1
Sn
}
成等差数列,并求数列{an}的通项公式;
(3)另有一新数列{bn},若将数列{bn}中的所有项按每一行比上一行多一项的规则排成如下数表:记表中的第一列数b1,b2,b4,b7,…,构成的数列即为数列{an},上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当b81=-
4
91
时,求上表中第k(k≥3)行所有项的和.

查看答案和解析>>

给出定义:若m-
1
2
<x≤m+
1
2
(其中m为整数),则m叫做离实数x最近的整数,记作{x},即 {x}=m.在此基础上有函数f(x)=|x-{x}
.
 
(x∈

(1)求f(4),f(-
1
2
),f(-8.3)
的值;
(2)对于函数f(x),现给出如下一些判断:
①函数y=f(x)是偶函数;
②函数y=f(x)是周期函数;
③函数y=f(x)在区间(-
1
2
1
2
]
上单调递增;
④函数y=f(x)的图象关于直线x=k+
1
2
 &(k∈Z)
对称;
请你将以上四个判断中正确的结论全部选择出来,并选择其中一个加以证明;
(3)若-206<x≤207,试求方程f(x)=
9
23
的所有解的和.

查看答案和解析>>

已知
m
=(sinwx,coswx)
n
=(cos
φ,sinφ),函数f(x)=2(Acoswx)
m
n
-Asin
φ (其中A>0,ω>0,|φ|<
π
2
)
的图象在y轴右侧的第一个最高点(即函数取得最大值的点)为P(
1
3
,2),在原点右侧与x轴的第一个交点为Q(
5
6
,0).
(1)求函数f(x)的表达式;
(2判断函数f(x)在区间[
21
4
23
4
]
上是否存在对称轴,存在求出方程;否则说明理由.

查看答案和解析>>


同步练习册答案