解:(I)由已知条件: . 得: 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ax2+bx+5,记f(x)的导数为f′(x).
(I)若曲线f(x)在点(1,f(1))处的切线斜率为3,且x=
2
3
时,y=f(x)有极值,求函数f(x)的解析式;
(II)在(I)的条件下,求函数f(x)在[-4,1]上的最大值和最小值;
(III)若关于x的方程f’(x)=0的两个实数根为α、β,且1<α<β<2试问:是否存在正整数n0,使得|f′(n0)|≤
3
4
?说明理由.

查看答案和解析>>

解:因为有负根,所以在y轴左侧有交点,因此

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


 13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。

查看答案和解析>>

已知函数f(x)=+ax2+bx+5,记f(x)的导数为f′(x).
(I)若曲线f(x)在点(1,f(1))处的切线斜率为3,且时,y=f(x)有极值,求函数f(x)的解析式;
(II)在(I)的条件下,求函数f(x)在[-4,1]上的最大值和最小值;
(III)若关于x的方程f’(x)=0的两个实数根为α、β,且1<α<β<2试问:是否存在正整数n,使得?说明理由.

查看答案和解析>>

已知函数f(x)=+ax2+bx+5,记f(x)的导数为f′(x).
(I)若曲线f(x)在点(1,f(1))处的切线斜率为3,且时,y=f(x)有极值,求函数f(x)的解析式;
(II)在(I)的条件下,求函数f(x)在[-4,1]上的最大值和最小值;
(III)若关于x的方程f’(x)=0的两个实数根为α、β,且1<α<β<2试问:是否存在正整数n,使得?说明理由.

查看答案和解析>>

已知数列是首项为的等比数列,且满足.

(1)   求常数的值和数列的通项公式;

(2)   若抽去数列中的第一项、第四项、第七项、……、第项、……,余下的项按原来的顺序组成一个新的数列,试写出数列的通项公式;

(3) 在(2)的条件下,设数列的前项和为.是否存在正整数,使得?若存在,试求所有满足条件的正整数的值;若不存在,请说明理由.

【解析】第一问中解:由,,

又因为存在常数p使得数列为等比数列,

,所以p=1

故数列为首项是2,公比为2的等比数列,即.

此时也满足,则所求常数的值为1且

第二问中,解:由等比数列的性质得:

(i)当时,

(ii) 当时,

所以

第三问假设存在正整数n满足条件,则

则(i)当时,

 

查看答案和解析>>


同步练习册答案