题目列表(包括答案和解析)
解析:对任意x1,x2∈[0,+∞)(x1≠x2),有<0,实际上等价于函数f(x)在[0,+∞)上是减函数,故f(3)<f(2)<f(1),由于函数是偶函数,故f(3)<f(-2)<f(1).
答案:A
解析:依题意得f(x)的图象关于直线x=1对称,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函数f(x)是以4为周期的函数.由f(x)在[3,5]上是增函数与f(x)的图象关于直线x=1对称得,f(x)在[-3,-1]上是减函数.又函数f(x)是以4为周期的函数,因此f(x)在[1,3]上是减函数,f(x)在[1,3]上的最大值是f(1),最小值是f(3).
答案:A
x2+a |
bx-c |
1 |
2 |
1 |
an |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com