答案:B 分析:.f= -.f的周期为6 查看更多

 

题目列表(包括答案和解析)

已知集合A={x|0≤x≤4},集合B={y|0≤y≤2},从A到B的对应法则f分别为:
①f:x→
1
2
x    ②f:x→x-2    ③f:x→
x
④f:x→|x-2|
其中构成映射关系的对应法则是
 
(将所有答案的序号均填在横线上).

查看答案和解析>>

已知一个函数f(x)满足:①定义域为R;②对任意的a,b∈R,若a+b=0,则f(a)+f(b)=0;③对任意的x∈R,若m<0,则f(x)>f(x+m),则f(x)可以是
x(答案不唯一,满足定义域为R,在定义域上单调递增的奇函数即可)
x(答案不唯一,满足定义域为R,在定义域上单调递增的奇函数即可)
(写出一个即可)

查看答案和解析>>

对于定义在D上的函数y=f(x),若同时满足:①f(x)在D内单调;②存在区间[a,b]⊆D,使f(x)在区间[a,b]上值域为[a,b],则函数y=f(x)(x∈D)称为闭函数.按照上述定义,若函数y=
2x
为闭函数,则符合条件②的区间[a,b]可以是
[1,2]或[-2,-1]等等(答案不唯一)
[1,2]或[-2,-1]等等(答案不唯一)

查看答案和解析>>

以下说法正确的是
③④
③④

①lg9•lg11>1.
②用数学归纳法证明“1+a+a2+…+an+1=
1-an+21-a
(n∈N*,a≠1)
”在验证n=1时,左边=1.
③已知f(x)是R上的增函数,a,b∈R,则f(a)+f(b)≥f(-a)+f(-b)的充要条件是a+b≥0.
④用分析法证明不等式的思维是从要证的不等式出发,逐步寻找使它成立的充分条件.

查看答案和解析>>

已知集合A={x|0≤x≤4},集合B={y|0≤y≤2},从AB的对应关系f分别为:

fxx;②fxx-2

fx;④fx→|x-2|

其中,是函数关系的是________(将所有答案的序号均填在横线上).

查看答案和解析>>


同步练习册答案