A. B. C. D.答案:B 查看更多

 

题目列表(包括答案和解析)

定义{a,b,c}为函数y=ax2+bx+c的“特征数”.如:函数y=x2-2x+3的“特征数”是{1,-2,3},函数y=2x+3的“特征数”是{0,2,3,},函数y=-x的“特征数”是{0,-1,0}
(1)将“特征数”是{0,
3
3
,1
}的函数图象向下平移2个单位,得到的新函数的解析式是
y=
3
3
x-1
y=
3
3
x-1
; (答案写在答卷上)
(2)在(1)中,平移前后的两个函数分别与y轴交于A、B两点,与直线x=
3
分别交于D、C两点,在平面直角坐标系中画出图形,判断以点A、B、C、D为顶点的四边形形状,并说明理由;
(3)若(2)中的四边形与“特征数”是{1,-2b,b2+
1
2
}的函数图象的有交点,求满足条件的实数b的取值范围.

查看答案和解析>>

定义{a,b,c}为函数y=ax2+bx+c的“特征数”.如:函数y=x2-2x+3的“特征数”是{1,-2,3},函数y=2x+3的“特征数”是{0,2,3,},函数y=-x的“特征数”是{0,-1,0}
(1)将“特征数”是{数学公式}的函数图象向下平移2个单位,得到的新函数的解析式是________; (答案写在答卷上)
(2)在(1)中,平移前后的两个函数分别与y轴交于A、B两点,与直线x=数学公式分别交于D、C两点,在平面直角坐标系中画出图形,判断以点A、B、C、D为顶点的四边形形状,并说明理由;
(3)若(2)中的四边形与“特征数”是{数学公式}的函数图象的有交点,求满足条件的实数b的取值范围.

查看答案和解析>>

铁矿石A和B的含铁率a ,冶炼每万吨铁矿石的的排放量b及每万吨铁矿石的价格c如下表:

a

b(万吨)

c(百万元)

A

50%

1

3

B

70%

0.5

6

某冶炼厂至少要生产1.9(万吨)铁,若要求的排放量不超过2(万吨)则购买铁矿石的最少费用为

A.14 万元       B.15万元       C.20万元       D.以上答案都不对

查看答案和解析>>

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,求线段AE的长.
B.(选修4-2:矩阵与变换)
已知二阶矩阵A有特征值λ1=3及其对应的一个特征向量α1=
1
1
,特征值λ2=-1及其对应的一个特征向量α2=
1
-1
,求矩阵A的逆矩阵A-1
C.(选修4-4:坐标系与参数方程)
以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),已知点A的直角坐标为(-2,6),点B的极坐标为(4,
π
2
)
,直线l过点A且倾斜角为
π
4
,圆C以点B为圆心,4为半径,试求直线l的参数方程和圆C的极坐标方程.
D.(选修4-5:不等式选讲)
设a,b,c,d都是正数,且x=
a2+b2
y=
c2+d2
.求证:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
过圆O外一点P分别作圆的切线和割线交圆于A,B,且PB=7,∠ABP=∠ABC,C是圆上一点使得BC=5,求线段AB的长.
B.(选修4-2:矩阵与变换)
求曲线C:xy=1在矩阵
2
2
-
2
2
2
2
2
2
对应的变换作用下得到的曲线C′的方程.
C.(选修4-4:坐标系与参数方程)
已知曲线C1
x=3cosθ
y=2sinθ
(θ为参数)和曲线C2:ρsin(θ-
π
4
)=
2

(1)将两曲线方程分别化成普通方程;
(2)求两曲线的交点坐标.
D.(选修4-5:不等式选讲)
已知|x-a|<
c
4
,|y-b|<
c
6
,求证:|2x-3y-2a+3b|<c.

查看答案和解析>>


同步练习册答案