上递增.那么 查看更多

 

题目列表(包括答案和解析)

(文科做(1)(2)(4),理科全做)
已知过抛物线C1:y2=2px(p>0)焦点F的直线交抛物线于A(x1,y1),B(x2,y2)两点 
(1)证明:y1y2=-p2且(y1+y22=2p(x1+x2-p);
(2)点Q为线段AB的中点,求点Q的轨迹方程;
(3)若x1=1,x2=4,以坐标轴为对称轴的椭圆或双曲线C2过A、B两点,求曲线C1和C2的方程;
(4)在(3)的条件下,若曲线C2的两焦点分别为F1、F2,线段AB上有两点C(x3,y3),D(x4,y4)(x3<x4),满足:①SF1F2A-SF1F2C=SF1F2D-SF1F2B,②AB=3CD.在线段F1 F2上是否存在一点P,使PD=
11
,若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

(2012•石景山区一模)定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(1)证明:数列{2an+1}是“平方递推数列”,且数列{lg(2an+1)}为等比数列.
(2)设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项及Tn关于n的表达式.
(3)记bn=log2an+1Tn,求数列{bn}的前n项之和Sn,并求使Sn>2011的n的最小值.

查看答案和解析>>

(理科)定义在R上的函数f(x)=
x+b
ax2+1
(a,b∈R,a≠0)
是奇函数,当且仅当x=1时,f(x)取得最大值.
(1)求a、b的值;
(2)若方程f(x)+
mx
1+x
=0在区间(-1,1)
上有且仅有两个不同实根,求实数m的取值范围.

查看答案和解析>>

某人玩硬币走跳棋的游戏,已知硬币出现正、反面的概率都是
1
2
.棋盘上标有第0站、第1站、第2站、…、第m(m∈N,m≥100)站.一枚棋子开始在第0站,棋手每掷一次硬币,棋子向前跳动一次,若掷出正面,棋子向前跳一站;若掷出反面,则棋子向前跳两站,直到棋子跳到第m-1站(胜利大本营)或第m站(失败大本营)时,该游戏结束.设棋子跳到第n站的概率为Pn
(1)求P0,Pl,P2
(2)写出Pn与Pn-1,pn-2的递推关系;
(3)求证:玩该游戏获胜的概率小于
2
3

查看答案和解析>>

(理科)在平面直角坐标系中,F为抛物线C:x2=2py(p>0)的焦点,M为抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为
3
4

(1)求抛物线C的方程;
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M;若不存在,说明理由.
(3)若点M的横坐标为2,直线l:y=kx+
1
4
与抛物线C有两个不同的交点A、B,l与圆Q有两个不同的交点D、E,用含k的式子表示 AB2+DE2

查看答案和解析>>


同步练习册答案