函数的值是 A.0 B. C. D.―答案:D 查看更多

 

题目列表(包括答案和解析)

(理科)设函数f(x)的定义域为R,若存在常数 M>0,使|f(x)|≤M|x|对一切实数 x均成立,则f(x)为β函数.现给出如下4个函数:(1)f(x)=0;f(x)=x2;f(x)=
2
(sinx+cosx);f(x)=
x
x2+x+1
.其中是β函数的序号是
(1)(4)
(1)(4)

查看答案和解析>>

函数f(x)=x3+ax2+x+2(x∈R)
(1)当a=-1时,求函数的极值
(2)若f(x)在x∈(-∞,∞)上是增函数,求实数a的取值范围.
(3)(理科做,文科不用做)
若a=3时,f(x)=x3+3x2+x+2的导函数f(x)是二次函数,f(x)的图象关于轴对称.你认为三次函数f(x)=x3+3x2+x+2的图象是否具有某种对称性,并证明你的结论.

查看答案和解析>>

定义:如果数列{an}的任意连续三项均能构成一个三角形的三边长,则称{an}为“三角形”数列.对于“三角形”数列{an},如果函数y=f(x)使得bn=f(an)仍为一个“三角形”数列,则称y=f(x)是数列{an}的“保三角形函数”,(n∈N).
(1)已知{an}是首项为2,公差为1的等差数列,若f(x)=kx,(k>1)是数列{an}的“保三角形函数”,求k的取值范围;
(2)已知数列{cn}的首项为2010,Sn是数列{cn}的前n项和,且满足4Sn+1-3Sn=8040,证明{cn}是“三角形”数列;
(3)[文科]若g(x)=lgx是(2)中数列{cn}的“保三角形函数”,问数列{cn}最多有多少项.
[理科]根据“保三角形函数”的定义,对函数h(x)=-x2+2x,x∈[1,A],和数列1,1+d,1+2d,(d>0)提出一个正确的命题,并说明理由.

查看答案和解析>>

(2013•烟台二模)下列有关命题说法正确的是(  )

查看答案和解析>>

(理科)函数y=x+
a
x
(a是常数,且a>0)
有如下性质:①函数是奇函数;②函数在(0,
a
]
上是减函数,在[
a
,+∞)
上是增函数.
(1)如果函数y=x+
2b
x
(x>0)的值域是[6,+∞),求b的值;
(2)判断函数y=x2+
c
x2
(常数c>0)在定义域内的奇偶性和单调性,并加以证明;
(3)对函数y=x+
a
x
和y=x2+
c
x2
(常数c>0)分别作出推广,使它们是你推广的函数的特例.判断推广后的函数的单调性(只需写出结论,不要证明).

查看答案和解析>>


同步练习册答案