题目列表(包括答案和解析)
解析:由题意知
当-2≤x≤1时,f(x)=x-2,
当1<x≤2时,f(x)=x3-2,
又∵f(x)=x-2,f(x)=x3-2在定义域上都为增函数,
∴f(x)的最大值为f(2)=23-2=6.
答案:C
A
解析:由题意:等比数列{}有连续四项在集合{-54,-24,18,36,81}中,由等比数列的定义知,四项是两个正数,两个负数且|q|>1,故-24, 36, -54,81符合题意,则q=,6q=-9.
C
[解析] 由题意知a·b=4(x-1)+2y=0,∴2x+y=2,∴9x+3y=32x+3y≥2=6,等号成立时,x=,y=2,故选C.
A
解析:由题意:等比数列{}有连续四项在集合{-54,-24,18,36,81}中,由等比数列的定义知,四项是两个正数,两个负数且|q|>1,故-24, 36, -54,81符合题意,则q=,6q=-9.
在函数的图象上有、、三点,横坐标分别为其中.
⑴求的面积的表达式;
⑵求的值域.
【解析】由题意利用分割可先表示三角形ABC的面积,然后应用对数运算性质及二次函数的性质求解函数的最大值,属于知识的简单综合.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com