题目列表(包括答案和解析)
(06年北京卷理)(14分)
在数列中,若是正整数,且,则称为“绝对差数列”.
(Ⅰ)举出一个前五项不为零的“绝对差数列”(只要求写出前十项);
(Ⅱ)若“绝对差数列”中,,数列满足,,分别判断当时,与的极限是否存在,如果存在,求出其极限值;
(Ⅲ)证明:任何“绝对差数列”中总含有无穷多个为零的项.
(06年辽宁卷理)(12分)
现有甲、乙两个项目,对甲项目每投资十万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为、、;已知乙项目的利润与产品价格的调整有关,在每次调整中价格下降的概率都是,设乙项目产品价格在一年内进行2次独立的调整,记乙项目产品价格在一年内的下降次数为,对乙项目每投资十万元, 取0、1、2时, 一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量、分别表示对甲、乙两项目各投资十万元一年后的利润.
(I) 求、的概率分布和数学期望、;
(II) 当时,求的取值范围.
|
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com