题目列表(包括答案和解析)
设函数.
(Ⅰ) 当时,求的单调区间;
(Ⅱ) 若在上的最大值为,求的值.
【解析】第一问中利用函数的定义域为(0,2),.
当a=1时,所以的单调递增区间为(0,),单调递减区间为(,2);
第二问中,利用当时, >0, 即在上单调递增,故在上的最大值为f(1)=a 因此a=1/2.
解:函数的定义域为(0,2),.
(1)当时,所以的单调递增区间为(0,),单调递减区间为(,2);
(2)当时, >0, 即在上单调递增,故在上的最大值为f(1)=a 因此a=1/2.
若,计算得当时,当时有,,,,因此猜测当时,一般有不等式________________
(1)由“若ab=ac(a≠0,a,b,c∈R),则b=c”;类比“若(为三个向量),则”;
(2)如果,那么;
(3)若回归直线方程为1.5x+45,x∈{1,5,7,13,19},则=58.5;
(4)当n为正整数时,函数N(n)表示n的最大奇因数,如N(3)=3,N(10)=5, ,由此可得函数N(n)具有性质:当n为正整数时,N(2n)= N(n),N(2n-1)=2n-1.
上述四个推理中,得出结论正确的是 (写出所有正确结论的序号).
(1)由“若ab=ac(a≠0,a,b,c∈R),则b=c”;类比“若(为三个向量),则”;
(2)如果,那么;
(3)若回归直线方程为1.5x+45,x∈{1,5,7,13,19},则=58.5;
(4)当n为正整数时,函数N(n)表示n的最大奇因数,如N(3)=3,N(10)=5, ,由此可得函数N(n)具有性质:当n为正整数时,N(2n)= N(n),N(2n-1)=2n-1.
上述四个推理中,得出结论正确的是 (写出所有正确结论的序号).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com