这说明函数在区间上是增函数 ------6分 查看更多

 

题目列表(包括答案和解析)

设函数

(1)当时,求曲线处的切线方程;

(2)当时,求的极大值和极小值;

(3)若函数在区间上是增函数,求实数的取值范围.

【解析】(1)中,先利用,表示出点的斜率值这样可以得到切线方程。(2)中,当,再令,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了在区间导数恒大于等于零,分离参数求解范围的思想。

解:(1)当……2分

   

为所求切线方程。………………4分

(2)当

………………6分

递减,在(3,+)递增

的极大值为…………8分

(3)

①若上单调递增。∴满足要求。…10分

②若

恒成立,

恒成立,即a>0……………11分

时,不合题意。综上所述,实数的取值范围是

 

查看答案和解析>>

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

设二次函数,对任意实数恒成立;数列满足.

(1)求函数的解析式和值域;

(2)试写出一个区间,使得当时,数列在这个区间上是递增数列,

并说明理由;

(3)已知,求:.

查看答案和解析>>

.(本题满分18分)

本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

设二次函数,对任意实数,有恒成立;数列满足.

(1)求函数的解析式和值域;

(2)试写出一个区间,使得当时,数列在这个区间上是递增数列,

并说明理由;

(3)已知,是否存在非零整数,使得对任意,都有

 恒成立,若存在,

求之;若不存在,说明理由.

 

查看答案和解析>>

.(本题满分18分)
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设二次函数,对任意实数,有恒成立;数列满足.
(1)求函数的解析式和值域;
(2)试写出一个区间,使得当时,数列在这个区间上是递增数列,
并说明理由;
(3)已知,是否存在非零整数,使得对任意,都有
 恒成立,若存在,
求之;若不存在,说明理由.

查看答案和解析>>


同步练习册答案