当 得:,时.得 查看更多

 

题目列表(包括答案和解析)

(本题满分18分,第(1)小题6分,第(2)小题6分,第(3)小题6分)

若数列满足:是常数),则称数列为二阶线性递推数列,且定义方程为数列的特征方程,方程的根称为特征根; 数列的通项公式均可用特征根求得:

①若方程有两相异实根,则数列通项可以写成,(其中是待定常数);

②若方程有两相同实根,则数列通项可以写成,(其中是待定常数);

再利用可求得,进而求得

根据上述结论求下列问题:

(1)当)时,求数列的通项公式;

(2)当)时,求数列的通项公式;

(3)当)时,记,若能被数整除,求所有满足条件的正整数的取值集合.

查看答案和解析>>

(本题满分16分)已知:圆C过定点A(0,p),圆心C在抛物线x2=2py上运动,若MN为圆C在X轴上截和的弦,设|AM|=m,|AN|=n,∠MAN=α,

(1).当点C运动时,|MN|是否变化?写出并证明你的结论;

(2).求的最大值,并求取得这个最大值时α的值和此时圆C的方程.

 

查看答案和解析>>

(本题满分16分)已知:圆C过定点A(0,p),圆心C在抛物线x2=2py上运动,若MN为圆C在X轴上截和的弦,设|AM|=m,|AN|=n,∠MAN=α,

(1).当点C运动时,|MN|是否变化?写出并证明你的结论;

(2).求的最大值,并求取得这个最大值时α的值和此时圆C的方程.

 

查看答案和解析>>

(本题满分18分,第(1)小题6分,第(2)小题6分,第(3)小题6分)
若数列满足:是常数),则称数列为二阶线性递推数列,且定义方程为数列的特征方程,方程的根称为特征根; 数列的通项公式均可用特征根求得:
①若方程有两相异实根,则数列通项可以写成,(其中是待定常数);
②若方程有两相同实根,则数列通项可以写成,(其中是待定常数);
再利用可求得,进而求得
根据上述结论求下列问题:
(1)当)时,求数列的通项公式;
(2)当)时,求数列的通项公式;
(3)当)时,记,若能被数整除,求所有满足条件的正整数的取值集合.

查看答案和解析>>

已知函数

(Ⅰ)若函数和函数在区间上均为增函数,求实数的取值范围;

(Ⅱ)若方程有唯一解,求实数的值.

【解析】第一问,   

当0<x<2时,,当x>2时,

要使在(a,a+1)上递增,必须

如使在(a,a+1)上递增,必须,即

由上得出,当上均为增函数

(Ⅱ)中方程有唯一解有唯一解

  (x>0)

随x变化如下表

x

-

+

极小值

由于在上,只有一个极小值,的最小值为-24-16ln2,

当m=-24-16ln2时,方程有唯一解得到结论。

(Ⅰ)解: 

当0<x<2时,,当x>2时,

要使在(a,a+1)上递增,必须

如使在(a,a+1)上递增,必须,即

由上得出,当上均为增函数  ……………6分

(Ⅱ)方程有唯一解有唯一解

  (x>0)

随x变化如下表

x

-

+

极小值

由于在上,只有一个极小值,的最小值为-24-16ln2,

当m=-24-16ln2时,方程有唯一解

 

查看答案和解析>>


同步练习册答案