题目列表(包括答案和解析)
设函数.
(Ⅰ) 当时,求的单调区间;
(Ⅱ) 若在上的最大值为,求的值.
【解析】第一问中利用函数的定义域为(0,2),.
当a=1时,所以的单调递增区间为(0,),单调递减区间为(,2);
第二问中,利用当时, >0, 即在上单调递增,故在上的最大值为f(1)=a 因此a=1/2.
解:函数的定义域为(0,2),.
(1)当时,所以的单调递增区间为(0,),单调递减区间为(,2);
(2)当时, >0, 即在上单调递增,故在上的最大值为f(1)=a 因此a=1/2.
5.A解析:因为函数有0,1,2三个零点,可设函数为f(x)=ax(x-1)(x-2)=ax3-3ax2+2ax
因此b=-3a,又因为当x>2时f(x)>0所以a>0,因此b<0
对于回归直线方程,当时,的估计值为
5.A解析:因为函数有0,1,2三个零点,可设函数为f(x)=ax(x-1)(x-2)=ax3-3ax2+2ax
因此b=-3a,又因为当x>2时f(x)>0所以a>0,因此b<0
若由一个2*2列联表中的数据计算得k=4.013,那么有 把握认为两个变量有关系.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com