则.解得m=±1.∵切线l不过第四象限. 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,曲线与坐标轴的交点都在圆上.

(1)求圆的方程;

 (2)若圆与直线交于两点,且,求的值.

【解析】本试题主要是考查了直线与圆的位置关系的运用。

(1)曲线轴的交点为(0,1),

轴的交点为(3+2,0),(3-2,0) 故可设的圆心为(3,t),则有32+(t-1)2=(2)2+t2,解得t=1.

(2)因为圆与直线交于两点,且。联立方程组得到结论。

 

查看答案和解析>>

求圆心在直线y=-2x上,并且经过点A(2,-1),与直线x+y=1相切的圆的方程.

【解析】利用圆心和半径表示圆的方程,首先

设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3,  ………4分

和y=-2x联立解得x=1,y=-2,即圆心(1,-2)  

∴r=,

故所求圆的方程为:=2

解:法一:

设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3,  ………4分

和y=-2x联立解得x=1,y=-2,即圆心(1,-2)             ……………………8分

∴r=,                 ………………………10分

故所求圆的方程为:=2                   ………………………12分

法二:由条件设所求圆的方程为: 

 ,          ………………………6分

解得a=1,b=-2, =2                     ………………………10分

所求圆的方程为:=2             ………………………12分

其它方法相应给分

 

查看答案和解析>>

.给出下列命题:

①命题“若b2-4ac<0,则方程ax2bxc=0(a≠0)无实根”的否命题;

②命题在“△ABC中,ABBCCA,那么△ABC为等边三角形”的逆命题;

③命题“若a>b>0,则>>0”的逆否命题;

④若“m>1,则mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题.

其中真命题的序号为________.

查看答案和解析>>

如图,某小区准备绿化一块直径为的半圆形空地,外的地方种草,的内接正方形为一水池,其余地方种花.若 ,设的面积为,正方形的面积为,将比值称为“规划合理度”.

(1)试用,表示.

(2)当为定值,变化时,求“规划合理度”取得最小值时的角的大小.

【解析】第一问中利用在ABC中  

设正方形的边长为  则  然后解得

第二问中,利用  而

借助于 为减函数 得到结论。 

(1)、 如图,在ABC中  

 

设正方形的边长为  则 

      = 

(2)、  而  ∵0 <  < ,又0 <2 <,0<t£1 为减函数   

时 取得最小值为此时 

 

查看答案和解析>>

已知直线xy-3m=0和2xy+2m-1=0的交点M在第四象限,求实数m的取值范围.

[分析] 解方程组得交点坐标,再根据点M在第四象限列出不等式组,解得m的取值范围.

查看答案和解析>>


同步练习册答案