题目列表(包括答案和解析)
解:因为有负根,所以在y轴左侧有交点,因此
解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2
13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点
(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数
数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。
|
|
|
解答题:解答应写出文字说明,证明过程或演算步骤.
定义F(x,y)=(1+x)y,x,y∈(0,+∞),
(Ⅰ)令函数f(x)=F(1,log2(x2-4x+9))的图象为曲线C1,曲线C1与y轴交于点A(0,m),过坐标原点O向曲线C1作切线,切点为B(n,t)(n>0),设曲线C1在点A、B之间的曲线段与线段OA、OB所围成图形的面积为S,求S的值;
(Ⅱ)令函数g(x)=F(1,log2(x3+ax2+bx+1))的图象为曲线C2,若存在实数b使得曲线C2在x0(-4<x0<-1)处有斜率为-8的切线,求实数a的取值范围;
(Ⅲ)当且x<y时,证明F(x,y)>F(y,x).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com