由(1)知. 查看更多

 

题目列表(包括答案和解析)

精英家教网已知,如图:四边形ABCD为矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,
(1)求证:直线MN⊥直线AB;
(2)若平面PDC与平面ABCD所成的二面角大小为θ,能否确定θ使直线MN是异面直线AB与PC的公垂线,若能确定,求出θ的值,若不能确定,说明理由.

查看答案和解析>>

由于卫生的要求游泳池要经常换水(进一些干净的水同时放掉一些脏水),游泳池的水深经常变化,已知泰州某浴场的水深y(米)是时间t(0≤t≤24),(单位小时)的函数,记作y=f(t),下表是某日各时的水深数据经长期观测的曲线y=f(t)可近似地看成函数y=Acosωt+b
t(时) 0 3 6 9 12 15 18 21 24
y(米) 2 5 2 0 15 20 249 2 151 199 2 5
(Ⅰ)根据以上数据,求出函数y=Acosωt+b的最小正周期T,振幅A及函数表达式;
(Ⅱ)依据规定,当水深大于2米时才对游泳爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供游泳爱好者进行运动.

查看答案和解析>>

已知,f(x)=ax-lnx,g(x)=
-f(x)
x
,a∈R.
(1)当a=1时,讨论f(x)的单调性、极值;
(2)当a=-1时,求证:g(x2)-f(x1)<2x1+
1
2
,?x1x2∈(0,+∞)
成立;
(3)是否存在实数a,使x∈(0,e]时,f(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

已知,p={x|x2-8x-20≤0},S={x||x-1|≤m}
(1)若p∪S⊆p,求实数m的取值范围;
(2)是否存在实数m,使“x∈p”是“x∈S”的充要条件,若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

知函数y=sin2x+sin2x+3cos2x,求
(1)函数的最小值及此时的x的集合;
(2)函数的单调减区间;
(3)此函数的图象可以由函数y=
2
sin2x
的图象经过怎样变换而得到.

查看答案和解析>>


同步练习册答案