由得同理由得 查看更多

 

题目列表(包括答案和解析)

由“(a2+a+1)x>3,得x>
3a2+a+1
”的推理过程中,其大前提是
不等式两边同除以一个正数,不等号方向不改变
不等式两边同除以一个正数,不等号方向不改变

查看答案和解析>>

(理)用n个不同的实数a1,a2,a3,…,an,得到n!个不同的排列,每个排列为一行,可写出一个n!行的数阵.第i行为ai1,ai2,ai3,…,ain,记bi=-ai1+2ai2-3ai3+…+(-1)nnain,i=1,2,3,…,n!.例如:用1,2,3可得数阵(如下图).由于每行都是1,2,3的一个排列,其中1作排头的有A22=2个,于是每一列中1,2,3都分别出现2次,所以此数阵每一列各数之和都是(1+2+3)×2=12,所以b1+b2+b3+…+b6=-12+2×12-3×12=-24.那么用1,2,3,4,5,形成的数阵中b1+b2+b3+…+b120等于

1  2  3

1  3  2

2  1  3

2  3  1

3  1  2

3  2  1

A.-3 600            B.1 800               C.-1 080          D.-720

查看答案和解析>>

某同学做了一个数字信号模拟传送器,经过10个环节,把由数字0,1构成的数字信号由发生端传到接受端.已知每一个环节会把1错转为0的概率为0.3,把0错转为1的概率为0.2,若发出的数字信号中共有10000个1,5000个0.问:
(1)从第1个环节转出的信号中0,1各有多少个?
(2)最终接受端收到的信号中0,1个数各是多少?(精确到十位)
(3)该同学为了完善自己的仪器,决定在接受端前加一个修正器,把得到的1和0分别以一定的概率转换为0和1,则概率分别等于多少时,才能在理论上保证最终接受到的0和1的个数与发出的信号同.

查看答案和解析>>

(理)(本小题满分12分)

    口袋里装有大小相同的4个红球和8个白球,甲、乙两人依规则从袋中有放回摸球,每次摸出一个球,规则如下:若一方摸出一个红球,则此人继续下一次摸球;若一方摸出一个白球,则由对方接替下一次摸球,且每次摸球彼此相互独立,并由甲进行第一次摸球;求在前三次摸球中,甲摸得红球的次数ξ的分布列及数学期望.

查看答案和解析>>

(理)(本小题满分12分)
口袋里装有大小相同的4个红球和8个白球,甲、乙两人依规则从袋中有放回摸球,每次摸出一个球,规则如下:若一方摸出一个红球,则此人继续下一次摸球;若一方摸出一个白球,则由对方接替下一次摸球,且每次摸球彼此相互独立,并由甲进行第一次摸球;求在前三次摸球中,甲摸得红球的次数ξ的分布列及数学期望.

查看答案和解析>>


同步练习册答案