由.解得x=0,或x=3; --- 3分 查看更多

 

题目列表(包括答案和解析)

解答题:解答应写出文字说明,证明过程或演算步骤.

已知函数f(x)=mx3-3(m+1)x2+3(m+2)x+1,其中m∈R.

(Ⅰ)若m<0,求f(x)的单调区间;

(Ⅱ)在(Ⅰ)的条件下,当x∈[-1,1]时,函数y=f(x)的图象上任意一点的切线斜率恒大于3m,求m的取值范围;

(Ⅲ)设g(x)=mx3-(3m+2)x2+3mx+4lnx+m+1,问是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

解答题:解答时要求写出必要的文字说明或推演步骤.

已知向量=(1,0),=(0,1),规定=x(x-1)……(x-m+1),其中x∈R,m∈N+,且=1.函数f(x)=(ab≠0)在x=1处取得极值,在x=2处的切线平行向量=(b+5,5a).

(1)

f(x)的解析式

(2)

f(x)的单调区间

(3)

是否存在正整数m,使得方程在区间(m,m+1)内有且只有两个不等实根?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

下列几个命题:

①关于x的不等式ax<在(0,1)上恒成立,则a的取值范围为

函数y=log2(-x+1)+2的图象可由y=log2(―x―1)-2的图象向上平移4个单位,向右平移2个单位得到;

若关于x方程|x2―2x―3|=m有两解,则;m=0或m>4;

若函数f(2x+1)是偶函数,则f(2x)的图象关于直线x=对称.

其中正确的有________.

查看答案和解析>>

解答题:解答应写出文字说明,证明过程或演算步骤

已知数列{an}中a1=1,且P(anan+1)在直线x-y+1=0上,

(1)

求数列{an}的通项公式

(2)

,求Tn的最小值

(3)

Sn是{bn}的前n项和,问:是否存在关于n的整式g(n)使得S1+S2+…+Sn-1=(Sn-1)g(n)对一切n≥2的自然n恒成立说明理由.

查看答案和解析>>

解答题:解答应写出文字说明,证明过程或演算步骤.

已知数列{an}中,a1=1且点P(anan+1)(n∈N*)在直线x-y+1=0上.

(1)

求数列{an}的通项an

(2)

若函数

求证:f(n)≥

(3)

Sn表示数列{bn}的前项和.试问:是否存在关于n的整式g(n),使得S1+S2+S3…+Sn-1=(Sn-1)·g(n)对于一切不小于2的自然数n恒成立?若不存在,试说明理由.若存在,写出g(n)的解析式,并加以证明

查看答案和解析>>


同步练习册答案