(3)假设存在.由①知抛物线的对称轴为x=-1.且 查看更多

 

题目列表(包括答案和解析)

已知数列是首项为的等比数列,且满足.

(1)   求常数的值和数列的通项公式;

(2)   若抽去数列中的第一项、第四项、第七项、……、第项、……,余下的项按原来的顺序组成一个新的数列,试写出数列的通项公式;

(3) 在(2)的条件下,设数列的前项和为.是否存在正整数,使得?若存在,试求所有满足条件的正整数的值;若不存在,请说明理由.

【解析】第一问中解:由,,

又因为存在常数p使得数列为等比数列,

,所以p=1

故数列为首项是2,公比为2的等比数列,即.

此时也满足,则所求常数的值为1且

第二问中,解:由等比数列的性质得:

(i)当时,

(ii) 当时,

所以

第三问假设存在正整数n满足条件,则

则(i)当时,

 

查看答案和解析>>

已知定义域为[0,1]的函数f(x)同时满足以下三个条件:①对于任意的x∈[0,1],总有f(x)≥0;
②f(1)=1;③当x1,x2∈[0,1]且x1+x2∈[0,1]时,f(x1+x2)≥f(x1)+f(x2)成立,则称函数f(x)为“友谊函数”.给出下列命题:
(1)“友谊函数”f(x)一定满足f(0)=0;
(2)函数y=log2(x+1),y=2x-1,y=2x2-x在[0,1]上都是“友谊函数”;
(3)“友谊函数”f(x)一定不是单调函数;
(4)若f(x)为“友谊函数”,假设存在x0∈[0,1]使得f(x0)∈[0,1]且f[f(x0)]=x0,则f(x0)=x0
其中正确的命题的序号为
(1),(4)
(1),(4)
(把所有正确命题的序号都填上)

查看答案和解析>>

(2012•许昌二模)设a≥0,函数f(x)=[x2+(a-3)x-2a+3]exg(x)=2-a-x-
4x+1

( I)当a≥1时,求f(x)的最小值;
( II)假设存在x1,x2∈(0,+∞),使得|f(x1)-g(x2)|<1成立,求a的取值范围.

查看答案和解析>>

已知函数y=f(x)(x∈D),方程f(x)=x的根x0称为函数f(x)的不动点;若a1∈D,an+1=f(an)(n∈N*),则称{an} 为由函数f(x)导出的数列.
设函数g(x)=
4x+2
x+3
,h(x)=
ax+b
cx+d
(c≠0,ad-bc≠0,(d-a)2+4bc>0)

(1)求函数g(x)的不动点x1,x2
(2)设a1=3,{an} 是由函数g(x)导出的数列,对(1)中的两个不动点x1,x2(不妨设x1<x2),数列求证{
an-x1
an-x2
}
是等比数列,并求
lim
n→∞
an

(3)试探究由函数h(x)导出的数列{bn},(其中b1=p)为周期数列的充要条件.
注:已知数列{bn},若存在正整数T,对一切n∈N*都有bn+T=bn,则称数列{bn} 为周期数列,T是它的一个周期.

查看答案和解析>>

本题满分12分)

某港口要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口北偏西且与该港口相距海里的处,并正以海里/小时的航行速度沿正东方向匀速行驶。假设该小艇沿直线方向以海里/小时的航行速度匀速行驶,经过小时与轮船相遇。

(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?XK]

(2)为保证小艇在分钟内(含分钟)能与轮船相遇,试确定小艇航行速度的最小值;[来(

(3)是否存在,使得小艇以海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定的取值范围;若不存在,请说明理由。

 

查看答案和解析>>


同步练习册答案