故实数的取值范围是, ----15分 查看更多

 

题目列表(包括答案和解析)

已知,函数

(1)当时,求函数在点(1,)的切线方程;

(2)求函数在[-1,1]的极值;

(3)若在上至少存在一个实数x0,使>g(xo)成立,求正实数的取值范围。

【解析】本试题中导数在研究函数中的运用。(1)中,那么当时,  又    所以函数在点(1,)的切线方程为;(2)中令   有 

对a分类讨论,和得到极值。(3)中,设,依题意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  当时,  又    

∴  函数在点(1,)的切线方程为 --------4分

(Ⅱ)令   有 

①         当

(-1,0)

0

(0,

,1)

+

0

0

+

极大值

极小值

的极大值是,极小值是

②         当时,在(-1,0)上递增,在(0,1)上递减,则的极大值为,无极小值。 

综上所述   时,极大值为,无极小值

时  极大值是,极小值是        ----------8分

(Ⅲ)设

求导,得

    

在区间上为增函数,则

依题意,只需,即 

解得  (舍去)

则正实数的取值范围是(

 

查看答案和解析>>

已知命题p:?x∈[1,2],ex-
12
x2-a≥0
是真命题,命题q:?x∈R,x2+2ax-8-6a≤0 是假命题,则实数的取值范围是
[-4,-2]
[-4,-2]

查看答案和解析>>

已知两个单位向量
a
b
的夹角为120°,若|
a
b
|<1
,则实数λ的取值范围是
(0,1)
(0,1)

查看答案和解析>>

已知幂函数y=xα的图象满足:当x∈(0,1)时,在直线y=x上方;当x∈(1,+∞)时,在直线y=x下方,则实数α的取值范围是
(-∞,1)
(-∞,1)

查看答案和解析>>

已知
a
=(2,-1),
b
=(1,λ)
,若|
a
+
b
|>|
a
-
b
|
,则实数λ的取值范围是(  )
A、(2,+∞)
B、(-∞,-
1
2
)∪(-
1
2
,2)
C、(-
1
2
2
3
)∪(
2
3
,+∞)
D、(-∞,2)

查看答案和解析>>


同步练习册答案