因为当时,; 查看更多

 

题目列表(包括答案和解析)

因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放a(1≤a≤4,且a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=a•f(x),其中f(x)=
16
8-x
-1,(0≤x≤4)
5-
1
2
x,(4<x≤10)

若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,
当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.
(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?
(Ⅱ)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试求a的最小值(精确到0.1,参考数据:
2
取1.4).

查看答案和解析>>

为迎接山东省第23届运动会在济宁召开,济宁市加快了城市建设改造的步伐.在太白路升级改造工程中,欲在京杭大运河上新建一座跨河大桥,最两端的两桥墩相距m米.经测算,一个桥墩的工程费用为256万元,距离为工米的相邻两桥墩之间的桥面工程费用为(2+x)x万元,假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记工程的总费用为:y万元.
(I )试写出y关于工的函数关系式;
(II)当m=320米时,需建多少个桥墩才能使得工程总费用y最小,最小费用为多少万元?

查看答案和解析>>

当n为正整数时,函数N(n)表示n的最大奇因数,如N(3)=3,N(10)=5,…,设Sn=N(1)+N(2)+N(3)+N(4)+…+N(2n-1)+N(2n),则Sn=
 

查看答案和解析>>

当前环境问题已成为世界关注的焦点,2009年哥本哈根世界气候大会召开后,为减少汽车尾气对城市的污染,某市决定对出租车实行使用液化气代替汽油的改装工程,原因是液化气燃烧后几乎不产生二氧化碳、一氧化碳、一氧化氮等有害气体,达到减排效果.请根据以下数据:①当前汽油价格为3.8元/升,市内出租车耗油情况是一升汽油能跑11.4千米;②当前液化气价格为4元/升,市内出租车耗油情况是一升液化气能跑16千米;③假设出租车每天能跑240千米.
(Ⅰ)从经济角度衡量一下使用液化气和使用汽油哪一种更经济(即省钱);
(Ⅱ)假设出租车改装成液化气设备需花费5000元,请问多长时间省出的钱等于改装设备花费的钱.

查看答案和解析>>

当n为正整数时,定义函数N (n)表示n的最大奇因数.如N (3)=3,N (10)=5,….记S(n)=N(1)+N(2)+N(3)+…+N(2n).则(1)S(4)=
86
86
.(2)S(n)=
4n+23

查看答案和解析>>


同步练习册答案