题目列表(包括答案和解析)
已知函数;
(1)若函数在其定义域内为单调递增函数,求实数的取值范围。
(2)若函数,若在[1,e]上至少存在一个x的值使成立,求实数的取值范围。
【解析】第一问中,利用导数,因为在其定义域内的单调递增函数,所以 内满足恒成立,得到结论第二问中,在[1,e]上至少存在一个x的值使成立,等价于不等式 在[1,e]上有解,转换为不等式有解来解答即可。
解:(1),
因为在其定义域内的单调递增函数,
所以 内满足恒成立,即恒成立,
亦即,
即可 又
当且仅当,即x=1时取等号,
在其定义域内为单调增函数的实数k的取值范围是.
(2)在[1,e]上至少存在一个x的值使成立,等价于不等式 在[1,e]上有解,设
上的增函数,依题意需
实数k的取值范围是
设函数.
(Ⅰ) 当时,求的单调区间;
(Ⅱ) 若在上的最大值为,求的值.
【解析】第一问中利用函数的定义域为(0,2),.
当a=1时,所以的单调递增区间为(0,),单调递减区间为(,2);
第二问中,利用当时, >0, 即在上单调递增,故在上的最大值为f(1)=a 因此a=1/2.
解:函数的定义域为(0,2),.
(1)当时,所以的单调递增区间为(0,),单调递减区间为(,2);
(2)当时, >0, 即在上单调递增,故在上的最大值为f(1)=a 因此a=1/2.
已知函数在处取得极值2.
⑴ 求函数的解析式;
⑵ 若函数在区间上是单调函数,求实数m的取值范围;
【解析】第一问中利用导数
又f(x)在x=1处取得极值2,所以,
所以
第二问中,
因为,又f(x)的定义域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上单调递增,在上单调递减,当f(x)在区间(m,2m+1)上单调递增,则有,得
解:⑴ 求导,又f(x)在x=1处取得极值2,所以,即,所以…………6分
⑵ 因为,又f(x)的定义域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上单调递增,在上单调递减,当f(x)在区间(m,2m+1)上单调递增,则有,得, …………9分
当f(x)在区间(m,2m+1)上单调递减,则有
得 …………12分
.综上所述,当时,f(x)在(m,2m+1)上单调递增,当时,f(x)在(m,2m+1)上单调递减;则实数m的取值范围是或
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
当时单调递减;当时单调递增,故当时,取最小值
于是对一切恒成立,当且仅当. ①
令则
当时,单调递增;当时,单调递减.
故当时,取最大值.因此,当且仅当时,①式成立.
综上所述,的取值集合为.
(Ⅱ)由题意知,令则
令,则.当时,单调递减;当时,单调递增.故当,即
从而,又
所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使即成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
设函数,其中为自然对数的底数.
(1)求函数的单调区间;
(2)记曲线在点(其中)处的切线为,与轴、轴所围成的三角形面积为,求的最大值.
【解析】第一问利用由已知,所以,
由,得, 所以,在区间上,,函数在区间上单调递减; 在区间上,,函数在区间上单调递增;
第二问中,因为,所以曲线在点处切线为:.
切线与轴的交点为,与轴的交点为,
因为,所以,
, 在区间上,函数单调递增,在区间上,函数单调递减.所以,当时,有最大值,此时,
解:(Ⅰ)由已知,所以, 由,得, 所以,在区间上,,函数在区间上单调递减;
在区间上,,函数在区间上单调递增;
即函数的单调递减区间为,单调递增区间为.
(Ⅱ)因为,所以曲线在点处切线为:.
切线与轴的交点为,与轴的交点为,
因为,所以,
, 在区间上,函数单调递增,在区间上,函数单调递减.所以,当时,有最大值,此时,
所以,的最大值为
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com