2, 2..4., 3.x≥2, 4.2x-18, 5.⑴x2;⑵;6.[-3,3] 查看更多

 

题目列表(包括答案和解析)

甲、乙两人各掷一次骰子(均匀的正方体六个面上分别为l,2,3,4,5,6点)所得点数分别为x,y.
(1)求x<y的概率;
(2)求5<x+y<10的概率.

查看答案和解析>>

甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次性抽取3道题独立作答,然后由乙回答剩余3题,每人答对其中2题就停止答题,即闯关成功.已知在6道被选题中,甲能答对其中的4道题,乙答对每道题的概率都是
23

(Ⅰ)求甲、乙至少有一人闯关成功的概率;
(Ⅱ)设甲答对题目的个数为X,求X的分布列及数学期望.

查看答案和解析>>

A={2,4,x2-5x+9},B={3,x2+ax+a},C={x2+(a+1)x-3,1},a、x∈R,求:
(1)使A={2,3,4}的x的值;
(2)使B=C成立的a、x的值.

查看答案和解析>>

甲、乙两人在相同条件下各射击10次,每次命中的环数如下:
8 6 7 8 6 5 9 10 4 7
6 7 7 8 6 7 8 7 9 5
(1)分别计算以上两组数据的平均数;
(2)分别计算以上两组数据的方差;公式:s2=
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2]
(3)根据计算结果,估计一下两人的射击情况.

查看答案和解析>>

甲、乙、丙三人独立地对某一技术难题进行攻关.甲能攻克的概率为b,乙能攻克的概率为c,丙能攻克的概率为z=(b-3)2+(c-3)2
(Ⅰ)求这一技术难题被攻克的概率;
(Ⅱ)现假定这一技术难题已被攻克,上级决定奖励z=4万元.奖励规则如下:若只有1人攻克,则此人获得全部奖金x2-bx-c=0万元;若只有2人攻克,则奖金奖给此二人,每人各得a∈1,2,3,4万元;若三人均攻克,则奖金奖给此三人,每人各得
a3
万元.设甲得到的奖金数为X,求X的分布列和数学期望.

查看答案和解析>>


同步练习册答案