证明:设.. 由对数的定义可得 .. 查看更多

 

题目列表(包括答案和解析)

M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足.”

(1)判断函数是否是集合M中的元素,并说明理由;

(2)集合M中的元素具有下面的性质:若的定义域为D,则对于任意,都存在,使得等式成立”,试用这一性质证明:方程只有一个实数根;

(3)设是方程的实数根,求证:对于定义域中任意的,当,且时,.

查看答案和解析>>

设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)﹣x=0有实数根;②函数f(x)的导数f′(x)满足0<f′(x)<1.”
(I)判断函数是否是集合M中的元素,并说明理由;
(II)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意
[m,n]D,都存在x0∈(m,n),使得等式f(n)﹣f(m)=(n﹣m)f'(x0)成立.
试用这一性质证明:方程f(x)﹣x=0只有一个实数根;
(III)设x1是方程f(x)﹣x=0的实数根,求证:对于f(x)定义域中任意的x2,x3,当|x2﹣x1|<1,且|x3﹣x1|<1时,有|f(x3)﹣f(x2)|<2.

查看答案和解析>>

设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)﹣x=0有实数根;②函数
f(x)的导数f'(x)满足0<f'(x)<1.”
(I)判断函数是否是集合M中的元素,并说明理由;
(II)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意
[m,n]D,都存在x0∈(m,n),使得等式f(n)﹣f(m)=(n﹣m)f'(x0)成立.试用这一性质证明:方程f(x)﹣x=0只有一个实数根;
(III)设x1是方程f(x)﹣x=0的实数根,求证:对于f(x)定义域中任意的x2,x3,当|x2﹣x1|<1,且|x3﹣x1|<1时,有|f(x3)﹣f(x2)|<2.

查看答案和解析>>

设M是由满足下列条件的函数f(x)构成的集合:

①方程f(x)-x=0有实数根;②函数f(x)的导函数f′(x)满足0<f′(x)<1.

(1)判断函数f(x)=x+sinx是否是集合M中的元素,并说明理由;

(2)集合M中的元素f(x)具有下列性质:

若f(x)的定义域为I,则对于任意[m,n]I都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f′(x0)成立.

    请利用这一性质证明:方程f(x)-x=0有唯一的实数根;

(3)若存在实数x1,使得m中元素f(x)定义域中的任意实数a、b都有|a-x1|<1和|b-x1|<1成立.证明:|f(b)-f(a)|<2

查看答案和解析>>

集合A是由适合以下性质的函数构成的:对于定义域内任意两个不相等的实数,都有.

1)试判断=是否在集合A中,说明理由;

2)设?A且定义域为?0??,值域为?01?试写出一个满足以上条件的函数的解析式,并给予证明.

 

查看答案和解析>>


同步练习册答案