.试举反例.三.数学运用: 查看更多

 

题目列表(包括答案和解析)

9、数学中的综合法是(  )

查看答案和解析>>

|AB|=|xA-xB|表示数轴上A,B两点的距离,它也可以看作满足一定条件的一种运算.这样,可以将满足下列三个条件的一个x与y间的运算p(x,y)叫做x,y之间的距离:条件一,非负性p(x,y)≥0,等号成立当且仅当x=y;条件二,交换律p(x,y)=p(y,x);条件三,三角不等式p(x,z)≤p(x,y)+p(y,z).
试确定运算s(x,y)=
|x-y|1+|x-y|
是否为一个距离?是,证明;不是,举出反例.

查看答案和解析>>

几位同学对三元一次方程组
a1x+b1y+c1z=d1
a2x+b2y+c2z=d2
a3x+b3y+c3z=d3
(其中系数ai,bi,ci(i=1,2,3)不全为零)    的解的情况进行研究后得到下列结论:
结论一:当D=0,且Dx=Dy=Dz=0时,方程组有无穷多解;
结论二:当D=0,且Dx,Dy,Dz都不为零时,方程组有无穷多解;
结论三:当D=0,且Dx=Dy=Dz=0时,方程组无解.
可惜的是这些结论都不正确.现在请你分析一下,下面给出的方程组可以作为结论一、二、三的反例分别是(  )
(1)
x+2y+3z=0
x+2y+3z=1
x+2y+3z=2
;  (2)
x+2y=0
x+2y+z=0
2x+4y=0
;  (3)
2x+y=1
-x+2y+z=0
x+3y+z=2

查看答案和解析>>

(2012•普陀区一模)设点F是抛物L:y2=2px(p>0)的焦点,P1,P2,…,Pn是抛物线L上的n个不同的点n(n≥3,n∈N*).
(1)当p=2时,试写出抛物线L上三点P1、P2、P3的坐标,时期满足|
FP1
|+|
FP2
|+|
FP3
|=6

(2)当n≥3时,若
FP1
+
FP2
+…+
FPn
=
0
,求证:|
FP1
|+|
FP2
|+…+|
FPn
|=np

(3)当n>3时,某同学对(2)的逆命题,即:“若|
FP1
|+| 
FP2
|+…+|  
FPN
|=np
,则
FP1
+
FP2
+…+
FPN
=
0
”开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
1.试构造一个说明该命题确实是假命题的反例;
2.对任意给定的大于3的正整数n,试构造该假命题反例的一般形式,并说明你的理由:
3.如果补充一个条件后能使该命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由.

查看答案和解析>>

设点是抛物线的焦点,是抛物线上的个不同的点().

(1) 当时,试写出抛物线上的三个定点的坐标,从而使得

(2)当时,若

求证:

(3) 当时,某同学对(2)的逆命题,即:

“若,则.”

开展了研究并发现其为假命题.

请你就此从以下三个研究方向中任选一个开展研究:

① 试构造一个说明该逆命题确实是假命题的反例(本研究方向最高得4分);

② 对任意给定的大于3的正整数,试构造该假命题反例的一般形式,并说明你的理由(本研究方向最高得8分);

③ 如果补充一个条件后能使该逆命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由(本研究方向最高得10分).

【评分说明】本小题若填空不止一个研究方向,则以实得分最高的一个研究方向的得分作为本小题的最终得分.

【解析】第一问利用抛物线的焦点为,设

分别过作抛物线的准线的垂线,垂足分别为.

由抛物线定义得到

第二问设,分别过作抛物线的准线垂线,垂足分别为.

由抛物线定义得

第三问中①取时,抛物线的焦点为

分别过作抛物线的准线垂线,垂足分别为.由抛物线定义得

,不妨取

解:(1)抛物线的焦点为,设

分别过作抛物线的准线的垂线,垂足分别为.由抛物线定义得

 

因为,所以

故可取满足条件.

(2)设,分别过作抛物线的准线垂线,垂足分别为.

由抛物线定义得

   又因为

所以.

(3) ①取时,抛物线的焦点为

分别过作抛物线的准线垂线,垂足分别为.由抛物线定义得

,不妨取

.

是一个当时,该逆命题的一个反例.(反例不唯一)

② 设,分别过

抛物线的准线的垂线,垂足分别为

及抛物线的定义得

,即.

因为上述表达式与点的纵坐标无关,所以只要将这点都取在轴的上方,则它们的纵坐标都大于零,则

,所以.

(说明:本质上只需构造满足条件且的一组个不同的点,均为反例.)

③ 补充条件1:“点的纵坐标)满足 ”,即:

“当时,若,且点的纵坐标)满足,则”.此命题为真.事实上,设

分别过作抛物线准线的垂线,垂足分别为,由

及抛物线的定义得,即,则

又由,所以,故命题为真.

补充条件2:“点与点为偶数,关于轴对称”,即:

“当时,若,且点与点为偶数,关于轴对称,则”.此命题为真.(证略)

 

查看答案和解析>>


同步练习册答案