练习:说明函数y=x-2及y=的奇偶性并作图 查看更多

 

题目列表(包括答案和解析)

已知集合M是同时满足下列两个性质的函数f(x)的全体:
①f(x)在其定义域上是单调增函数或单调减函数;
②在f(x)的定义域内存在区间[a,b],使得f(x)在[a,b]上的值域是[
1
2
a,
1
2
b]

(Ⅰ)判断函数y=-x3是否属于集合M?并说明理由.若是,请找出区间[a,b];
(Ⅱ)若函数y=
x-1
+t
∈M,求实数t的取值范围.

查看答案和解析>>

已知函数y=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]上是减函数,在[
a
,+∞)上是增函数.
(Ⅰ)如果函数y=x+
2b
x
(x>0)的值域为[6,+∞),求b的值;
(Ⅱ)研究函数y=x2+
c
x2
(常数c>0)在定义域内的单调性,并说明理由;
(Ⅲ)对函数y=x+
a
x
和y=x2+
a
x2
(常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=(x2+
1
x
n+(
1
x2
+x
n(n是正整数)在区间[
1
2
,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)函数f(x)=
1
x
是否属于集合M?说明理由;
(2)设函数f(x)=lg
a
x2+1
∈M
,求a的取值范围;
(3)设函数y=2x图象与函数y=-x的图象有交点,证明:函数f(x)=2x+x2∈M.

查看答案和解析>>

已知函数y=2sin(x-
π
6
)+1,x∈[0,2π]

(1)完成下面的表格,并用“五点法”作出函数的草图;
x-
π
6
0
x
π
6
y 1
(2)说明函数y=2sin(x-
π
6
)
+1的图象是由y=2sinx的图象经过怎样的变换而得到?

查看答案和解析>>

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,使得对任意x∈R,有f(x+T)=Tf(x)成立.
(1)函数f(x)=x是否属于M?说明理由;
(2)若函数f(x)=ax(a>0且a≠1)的图象与函数y=x的图象有公共点,求证:f(x)=ax∈M;
(3)设f(x)∈M,且T=2,已知当1<x<2时,f(x)=x+lnx,求当-3<x<-2时,f(x)的解析式.

查看答案和解析>>


同步练习册答案