零点的定义:方程f(x)=0的实数根的个数又叫函数y=f=0叫做函数y=f(x)所确定的方程. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图所示,f(x)是定义在区间[-c,c](c>0)上的奇函数,令g(x)=af(x)+b,并有关于函数g(x)的四个论断:
①若a>0,对于[-1,1]内的任意实数m,n(m<n),
g(n)-g(m)n-m
>0
恒成立;
②函数g(x)是奇函数的充要条件是b=0;
③若a≥1,b<0,则方程g(x)=0必有3个实数根;
④?a∈R,g(x)的导函数g′(x)有两个零点;
其中所有正确结论的序号是
 

查看答案和解析>>

如图所示,f(x)是定义在区间[-c,c](c>0)上的奇函数,令g(x)=af(x)+b,并有关于函数g(x)的四个论断:
①若a>0,对于[-1,1]内的任意实数m,n(m<n),恒成立;
②函数g(x)是奇函数的充要条件是b=0;
③若a≥1,b<0,则方程g(x)=0必有3个实数根;
④?a∈R,g(x)的导函数g'(x)有两个零点;
其中所有正确结论的序号是   

查看答案和解析>>

如图所示,f(x)是定义在区间[-c,c](c>0)上的奇函数,令g(x)=af(x)+b,并有关于函数g(x)的四个论断:
①若a>0,对于[-1,1]内的任意实数m,n(m<n),恒成立;
②函数g(x)是奇函数的充要条件是b=0;
③若a≥1,b<0,则方程g(x)=0必有3个实数根;
④?a∈R,g(x)的导函数g'(x)有两个零点;
其中所有正确结论的序号是   

查看答案和解析>>

如图所示,f(x)是定义在区间[-c,c](c>0)上的奇函数,令g(x)=af(x)+b,并有关于函数g(x)的四个论断:
①若a>0,对于[-1,1]内的任意实数m,n(m<n),恒成立;
②函数g(x)是奇函数的充要条件是b=0;
③若a≥1,b<0,则方程g(x)=0必有3个实数根;
④?a∈R,g(x)的导函数g'(x)有两个零点;
其中所有正确结论的序号是   

查看答案和解析>>

如图所示,f(x)是定义在区间[-c,c](c>0)上的奇函数,令g(x)=af(x)+b,并有关于函数g(x)的四个论断:
①若a>0,对于[-1,1]内的任意实数m,n(m<n),恒成立;
②函数g(x)是奇函数的充要条件是b=0;
③?a∈R,g(x)的导函数g'(x)有两个零点.
④若a≥1,b<0,则方程g(x)=0必有3个实数根;
其中所有正确结论的序号是   

查看答案和解析>>


同步练习册答案