8*.解:(1)利润函数 查看更多

 

题目列表(包括答案和解析)

已知某企业的原有产品,每年投入x万元,可获得的年利润可表示为函数:P(x)=-·(x-30)2+8(万元).现开发一个回报率高、科技含量高的新产品,据预测,新产品每年投入x万元,可获得年利润Q(x)=-(100-x)2+(100-x)(万元).新产品开发从“十五”计划的第一年开始,用两年时间完成.这两年,每年从100万元的生产准备金中,拿出80万元来投入新产品开发.从第三年开始这100万元全部用于新旧两种产品的生产投入.

(1)为了解决资金缺口,第一年初向银行贷款1 000万元,利率为5.5%(不计复利),第五年底一次性应向银行偿还本息共计多少万元?

(2)从新产品投产的第三年开始,从100万元的生产准备金中,新旧两种产品各应投入多少万元,才能使年利润最大?

(3)从新旧产品的五年总利润中最高拿出70%来,能否还清对银行的欠款?

查看答案和解析>>

(本小题满分12分)

已知甲、乙两个工厂在今年的1月份的利润都是6万,且乙厂在2月份的利润是8万元.若甲、乙两个工厂的利润(万元)与月份x之间的函数关系式分别符合下列函数模型:f(x)=a1x2—4x+6,g(x)=a2b2(a1a2b2∈R).

(1)求函数f(x)与g(x)的解析式;

(2)求甲、乙两个工厂今年5月份的利润;

(3)在同一直角坐标系下画出函数f(x)与g(x)的草图,并根据草图比较今年1—10月份甲、乙两个工厂的利润的大小情况.

 

查看答案和解析>>

(本小题满分12分)
已知甲、乙两个工厂在今年的1月份的利润都是6万,且乙厂在2月份的利润是8万元.若甲、乙两个工厂的利润(万元)与月份x之间的函数关系式分别符合下列函数模型:f(x)=a1x2—4x+6,g(x)=a2b2(a1a2b2∈R).
(1)求函数f(x)与g(x)的解析式;
(2)求甲、乙两个工厂今年5月份的利润;
(3)在同一直角坐标系下画出函数f(x)与g(x)的草图,并根据草图比较今年1—10月份甲、乙两个工厂的利润的大小情况.

查看答案和解析>>

(本小题满分12分)
已知甲、乙两个工厂在今年的1月份的利润都是6万,且乙厂在2月份的利润是8万元.若甲、乙两个工厂的利润(万元)与月份x之间的函数关系式分别符合下列函数模型:f(x)=a1x2—4x+6,g(x)=a2b2(a1a2b2∈R).
(1)求函数f(x)与g(x)的解析式;
(2)求甲、乙两个工厂今年5月份的利润;
(3)在同一直角坐标系下画出函数f(x)与g(x)的草图,并根据草图比较今年1—10月份甲、乙两个工厂的利润的大小情况.

查看答案和解析>>

某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价为5元,销售单价与日均销售量的关系如下表所示:
销售单价/元 6 7 8 9 10 11 12
日均销售量/桶 480 440 400 360 320 280 240
(I)建立利润关于销售单价的函数解析式;
(II)这个经营部怎样定价才能获得最大利润.

查看答案和解析>>


同步练习册答案