题目列表(包括答案和解析)
|
(1)f(0)=0且f(x)为奇函数;
(2)若数列{xn}满足x1=,xn+1=,求f(xn);
(3)在(2)的条件下,求.
对任意x、y∈R,且x、y≠0,已知函数y=f(x)(x≠0)满足f(xy)=f(x)+f(y).
求证:(1)f(1)=f(-1)=0;(2)y=f(x)为偶函数.
已知函数f(x)定义在区间(-1,1)上,f()=-1,且当x、y∈(-1,1)时,恒有f(x)-f(y)=f().又数列{an}满足a1=,an+1=.设bn=.
(1)证明:f(x)在(-1,1)上为奇函数;
(2)求f(an)的表达式;
(3)是否存在正整数m,使得对任意n∈N,都有bn<成立,若存在,求出m的最小值;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com