解:有误.改为思考:几何体是否唯一? 查看更多

 

题目列表(包括答案和解析)

阅读下面一段文字:已知数列{an}的首项a1=1,如果当n≥2时,an-an-1=2,则易知通项an=2n-1,前n项的和Sn=n2.将此命题中的“等号”改为“大于号”,我们得到:数列{an}的首项a1=1,如果当n≥2时,an-an-1>2,那么an>2n-1,且Sn>n2.这种从“等”到“不等”的类比很有趣.由此还可以思考:要证Sn>n2,可以先证an>2n-1,而要证an>2n-1,只需证an-an-1>2(n≥2).结合以上思想方法,完成下题:
已知函数f(x)=x3+1,数列{an}满足a1=1,an+1=f(an),若数列{an}的前n项的和为Sn,求证:Sn≥2n-1.

查看答案和解析>>

(2008•浦东新区二模)问题:过点M(2,1)作一斜率为1的直线交抛物线y2=2px(p>0)于不同的两点A,B,且点M为AB的中点,求p的值.请阅读某同学的问题解答过程:
解:设A(x1,y1),B(x2,y2),则y12=2px1,y22=2px2,两式相减,得(y1-y2)(y1+y2)=2p(x1-x2).又kAB=
y1-y2x1-x2
=1
,y1+y2=2,因此p=1.
并给出当点M的坐标改为(2,m)(m>0)时,你认为正确的结论:
p=m(0<m<4)
p=m(0<m<4)

查看答案和解析>>

小明和同桌小聪一起合作探索:如图,一架5米长的梯子AB斜靠在铅直的墙壁AC上,这时梯子的底端B到墙角C的距离为1.4米.如果梯子的顶端A沿墙壁下滑0.8米,那么底端B将向左移动多少米?

(1)小明的思路如下,请你将小明的解答补充完整:

解:设点B将向左移动x米,即BE=x,则:

EC= x+1.4,DC=ACDC=-0.8=4,

DE=5,在Rt△DEC中,由EC2+DC2=DE2

得方程为:     , 解方程得:    

∴点B将向左移动    米.

(2)解题回顾时,小聪提出了如下两个问题:

①将原题中的“下滑0.8米”改为“下滑1.8米”,那么答案会是1.8米吗?为什么?

②梯子顶端下滑的距离与梯子底端向左移动的距离能相等吗?为什么?

请你解答小聪提出的这两个问题.

 

查看答案和解析>>

(本小题满分14分)

阅读下面一段文字:已知数列的首项,如果当时,,则易知通项,前项的和. 将此命题中的“等号”改为“大于号”,我们得到:数列的首项,如果当时,,那么,且. 这种从“等”到“不等”的类比很有趣。由此还可以思考:要证,可以先证,而要证,只需证). 结合以上思想方法,完成下题:

已知函数,数列满足,若数列的前项的和为,求证:.

查看答案和解析>>

阅读下面一段文字:已知数列{an}的首项a1=1,如果当n≥2时,an-an-1=2,则易知通项an=2n-1,前n项的和Sn=n2.将此命题中的“等号”改为“大于号”,我们得到:数列{an}的首项a1=1,如果当n≥2时,an-an-1>2,那么an>2n-1,且Sn>n2.这种从“等”到“不等”的类比很有趣.由此还可以思考:要证Sn>n2,可以先证an>2n-1,而要证an>2n-1,只需证an-an-1>2(n≥2).结合以上思想方法,完成下题:
已知函数f(x)=x3+1,数列{an}满足a1=1,an+1=f(an),若数列{an}的前n项的和为Sn,求证:Sn≥2n-1.

查看答案和解析>>


同步练习册答案