(2)为防止个别学生像乙那样随机地作出选择.学校决定对每道选择错误的倒扣若干分.但倒扣太多对学生不公平.倒扣太少又达不到杜绝乱选的目的.倒扣的分数.应该恰到好处.使乱选一通的学生一无所获.换句话说.如果学生每道题都随机选择.那么他20道题所得总分的数学期望应该是0.问:对每道题选择错误应该倒扣多少分比较合适 查看更多

 

题目列表(包括答案和解析)

(2013•广州二模)某校高三学生体检后,为了解高三学生的视力情况,该校从高三六个班的300名学生中 以班为单位(每班学生50人),每班按随机抽样抽取了8名学生的视力数据.其中高三
(1)班抽取的8名学生的视力数据与人数见下表:
视力数据 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3
人数 2 2 2 1 1
(1)用上述样本数据估计高三(1)班学生视力的平均值;
(2)已知其余五个班学生视力的平均值分别为4.3、4.4,4.5、4.6、4.8.若从这六个 班中任意抽取两个班学生视力的平均值作比较,求抽取的两个班学生视力的平均值之差的绝对值不小于0.2的概率.

查看答案和解析>>

(2012•安徽模拟)为了了解某校高三文科学生在皖南八校第二次联考的数学成绩,从全校400名文科学生成绩中抽取了 40名学生的成绩,将所得数据整理后,画出其频率分布直方图(如图).已知第一组与第六组的频数和为6,并且从左到右各长方形髙的比为 m:3:5:6:3:1.
(1)求m的值;
(2)估计该校文科学生成绩在120分以上的学生人数;
(3)从样本中成绩在第一组和第六组的所有学生成绩中任取两人成绩,求两人成绩之差大于50的概率.

查看答案和解析>>

学校为3名学生提供甲、乙、丙、丁4个不同兴趣小组,每个同学任选其中一个.
(1)求3个同学选择3个不同兴趣小组的概率;
(2)求选择甲兴趣小组的人数的数学期望.

查看答案和解析>>

为了比较“传统式教学法”与我校所创立的“三步式教学法”的教学效果.共选100名学生随机分成两个班,每班50名学生,其中一班采取“传统式教学法”,二班实行“三步式教学法”
(Ⅰ)若全校共有学生2000名,其中男生1100名,现抽取100名学生对两种教学方式的受欢迎程度进行问卷调查,应抽取多少名女生?
(Ⅱ)下表1,2分别为实行“传统式教学”与“三步式教学”后的数学成绩:
表1
数学成绩 90分以下 90-120分 120-140分 140分以上
频    数 15 20 10 5
表2
数学成绩 90分以下 90-120分 120-140分 140分以上
频    数 5 40 3 2
完成下面2×2列联表,并回答是否有99%的把握认为这两种教学法有差异.
班  次 120分以下(人数) 120分以上(人数) 合计(人数)
一班      
二班      
合计      
参考数据:
P(K2≥k0 0.40 0.25 0.10 0.05 0.010 0.005
k0 0.708 1.323 2.706 3.841 6.635 7.879

查看答案和解析>>

(2010•马鞍山模拟)某市教育部门为了解高三学生素质测评情况,对其中的2000名学生的测评结果进行了统计,其中优秀、良好、合格三个等级的男、女学生人数如下表(其中x,y分别表示优秀等级的男、女学生人数)
优秀 良好 合格
男生人数 x 380 373
女生人数 y 370 377
(1)若用分层抽样法在这2000份综合素质测评结果中随机抽取60份进行比较分析,应抽取综合素质测评结果是优秀等级的多少份?
(2)若x≥245,y≥245,求优秀等级的学生中女生人数比男生人数多的概率.

查看答案和解析>>

 

一、选择题

BDCBB  DCBCB  AA

二、填空题

13.300    14.(文)  (理)3    15.    16.①③④

三、解答题

17.解:(1)

且与向量

(2)由(1)可得A+C

  8分

   10分

当且仅当时,

     12分

18.(文科)解:设既会唱歌又会跳舞的有x人,则文娱队共有(7-x)人,那么只会一项的人数是(7-2x)人,

(1)

故文娱队共有5人。(8分)

(2)P(=1)  (12分)

(理科)解:(1)甲得66分(正确11题)的概率为

……………………2分

乙得54分(正确9题)的概率为………………4分

显然P1=P2,即甲得66分的概率与乙得54分的概率一样大。………………6分

(2)设答错一题倒扣x分,则学生乙选对题的个数为随机选择20个题答对题的个数的期望为

得分为=6

即每答错一题应该倒扣2分。……………………12分

19.解(1)取BD中点N,连AN、MN

∵MN//BC

∴∠AMN或其邻补角就是异面直线AM与BC所成的角,在△AMN中,

  (4分)

(2)取BE中点P,连AP、PM,作MQ⊥AP于Q,

过Q作QH⊥AB于H,连MH,

∵EB⊥AP,EB⊥PM

∵EB⊥面APM即EB⊥MQ,

∴MQ⊥面AEB

∴HQ为MH在面AEB上的射影,即MH⊥AB

∴∠MHQ为二面角M―AB―E的平面角,

在△AMO中,

在△ABP中,

∴二面角M―AB―E的大小,为  (8分)

(3)若将图(1)与图(2)面ACD重合,该几何体是5面体

这斜三棱柱的体积=3VA-BCD=   (12分)

20.(文科)(1)

   …………………………2分

……………………4分

恒成立,

的单调区间为

…………………………6分

此时,函数上是增函数,

上是减函数……………………8分

(2)

直线的斜率为-4………………9分

假设无实根

不可能是函数图象的切线。………………12分

(理科)(1)

由于A、B、C三点共线,

……………………2分

…………………………4分

(2)令

上是增函数……………………6分

………………………………8分

(3)原不等式等价于

………………10分

       当

       得    12分

21.解:(I)由

       因直线

      

   

      

       故所求椭圆方程为

   (II)当L与x轴平行时,以AB为直径的圆的方程:

      

       当L与y轴平行时,以AB为直径的圆 的方程:

      

       即两圆相切于点(0,1)

       因此,所求的点T如果存在,只能是(0,1)。事实上,点T(0,1)就是所求的点,证明如下。

       若直线L垂直于x轴时,以AB为直径的圆过点T(0,1)

       若直线L不垂直于x轴时,可设直线

       由

       记点

       又因为

       所以

      

       ,即以AB为直径的圆恒过点T(0,1),故在坐标平面上存在一个定点T(0,1)满足条件

22.(文科)解:(I)

       曲线C在点

         (2分)

       令

       依题意点

      

       又   (4)

      

          (5分)

   (II)由已知

          ①

         ②

       ①-②得

      

         (9分)

          (10分)

       又

       又当

      

      

          (13)

       综上  (14分)

22.(理科)解:(I)

          2

   (II)

          3分

      

      

           4分

       上是增函数  5分

       又当也是单调递增的    6分

       当

       此时,不一定是增函数   7分

   (III)当

       当

       欲证:

       即证:

       即需证:

      

猜想 ………………8分

构造函数

在(0,1)上时单调递减的,

……………………10分

同理可证

成立……………………12分

分别取,所以n-1个不等式相加即得:

 ……………………14分

 

 


同步练习册答案