已知A.B.C是直线l上的三点.向量.满足: 查看更多

 

题目列表(包括答案和解析)

如图,已知直线L:x=my+1过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F,且交椭圆C于A、B两点,点A、B在直线G:x=a2上的射影依次为点D、E.
(1)若抛物线x2=4
3
y
的焦点为椭圆C 的上顶点,求椭圆C的方程;(2)(理科生做)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;
否则说明理由.
(文科生做)若N(
a2+1
2
,0)
为x轴上一点,求证:
AN
NE

查看答案和解析>>

已知F1,F2为椭圆C:
x2
a2
+
y2
b2
=1
,(a>b>0)的左右焦点,O是坐标原点,过F2作垂直于x轴的直线MF2交椭圆于M,设|MF2|=d.
(1)证明:d,b,a成等比数列;
(2)若M的坐标为(
2
,1)
,求椭圆C的方程;
[文科]在(2)的椭圆中,过F1的直线l与椭圆C交于A、B两点,若
OA
OB
=0,求直线l的方程.
[理科]在(2)的椭圆中,过F1的直线l与椭圆C交于A、B两点,若椭圆C上存在点P,使得
OP
=
OA
+
OB
,求直线l的方程.

查看答案和解析>>

如图,已知直线L:数学公式的右焦点F,且交椭圆C于A、B两点,点A、B在直线G:x=a2上的射影依次为点D、E.
(1)若抛物线数学公式的焦点为椭圆C 的上顶点,求椭圆C的方程;(2)(理科生做)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;
否则说明理由.
(文科生做)若数学公式为x轴上一点,求证:数学公式

查看答案和解析>>

如图,已知直线L:的右焦点F,且交椭圆C于A、B两点,点A、B在直线G:x=a2上的射影依次为点D、E.
(1)若抛物线的焦点为椭圆C 的上顶点,求椭圆C的方程;(2)(理科生做)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;
否则说明理由.
(文科生做)若为x轴上一点,求证:

查看答案和解析>>

 

一、选择题

BDCBB  DCBCB  AA

二、填空题

13.300    14.(文)  (理)3    15.    16.①③④

三、解答题

17.解:(1)

且与向量

(2)由(1)可得A+C

  8分

   10分

当且仅当时,

     12分

18.(文科)解:设既会唱歌又会跳舞的有x人,则文娱队共有(7-x)人,那么只会一项的人数是(7-2x)人,

(1)

故文娱队共有5人。(8分)

(2)P(=1)  (12分)

(理科)解:(1)甲得66分(正确11题)的概率为

……………………2分

乙得54分(正确9题)的概率为………………4分

显然P1=P2,即甲得66分的概率与乙得54分的概率一样大。………………6分

(2)设答错一题倒扣x分,则学生乙选对题的个数为随机选择20个题答对题的个数的期望为

得分为=6

即每答错一题应该倒扣2分。……………………12分

19.解(1)取BD中点N,连AN、MN

∵MN//BC

∴∠AMN或其邻补角就是异面直线AM与BC所成的角,在△AMN中,

  (4分)

(2)取BE中点P,连AP、PM,作MQ⊥AP于Q,

过Q作QH⊥AB于H,连MH,

∵EB⊥AP,EB⊥PM

∵EB⊥面APM即EB⊥MQ,

∴MQ⊥面AEB

∴HQ为MH在面AEB上的射影,即MH⊥AB

∴∠MHQ为二面角M―AB―E的平面角,

在△AMO中,

在△ABP中,

∴二面角M―AB―E的大小,为  (8分)

(3)若将图(1)与图(2)面ACD重合,该几何体是5面体

这斜三棱柱的体积=3VA-BCD=   (12分)

20.(文科)(1)

   …………………………2分

……………………4分

恒成立,

的单调区间为

…………………………6分

此时,函数上是增函数,

上是减函数……………………8分

(2)

直线的斜率为-4………………9分

假设无实根

不可能是函数图象的切线。………………12分

(理科)(1)

由于A、B、C三点共线,

……………………2分

…………………………4分

(2)令

上是增函数……………………6分

………………………………8分

(3)原不等式等价于

………………10分

       当

       得    12分

21.解:(I)由

       因直线

      

   

      

       故所求椭圆方程为

   (II)当L与x轴平行时,以AB为直径的圆的方程:

      

       当L与y轴平行时,以AB为直径的圆 的方程:

      

       即两圆相切于点(0,1)

       因此,所求的点T如果存在,只能是(0,1)。事实上,点T(0,1)就是所求的点,证明如下。

       若直线L垂直于x轴时,以AB为直径的圆过点T(0,1)

       若直线L不垂直于x轴时,可设直线

       由

       记点

       又因为

       所以

      

       ,即以AB为直径的圆恒过点T(0,1),故在坐标平面上存在一个定点T(0,1)满足条件

22.(文科)解:(I)

       曲线C在点

         (2分)

       令

       依题意点

      

       又   (4)

      

          (5分)

   (II)由已知

          ①

         ②

       ①-②得

      

         (9分)

          (10分)

       又

       又当

      

      

          (13)

       综上  (14分)

22.(理科)解:(I)

          2

   (II)

          3分

      

      

           4分

       上是增函数  5分

       又当也是单调递增的    6分

       当

       此时,不一定是增函数   7分

   (III)当

       当

       欲证:

       即证:

       即需证:

      

猜想 ………………8分

构造函数

在(0,1)上时单调递减的,

……………………10分

同理可证

成立……………………12分

分别取,所以n-1个不等式相加即得:

 ……………………14分

 

 


同步练习册答案