下列测量工具中.不能直接测量质量的是:( ) A.天平 B.台秤 C.磅秤 D.弹簧测力计, 查看更多

 

题目列表(包括答案和解析)

【典型例题点评】

例1:(05.宿迁)某物理实验小组的同学在探究“物体所受重力大小与物体质量的关系”的实验记录如下表:

  

  实测

  物体

物体质量

   m(kg)

   重力

   G(N)

  比值G/m

   (N/kg)

比值G/m的平均值

       (N/kg)

  物体1

    0.1

  0.99

    9.9


  物体2

    0.2

  1.96

    9.8

  物体3

    0.3

  2.91

    9.7

(1)在实验过程中,需要的测量工具有      和       ;

(2)在上表空白处填出比值G/m的平均值;

(3)分析表中实验数据,得出结论是:                。

分析与解:要探究“物体所受重力大小与物体质量的关系”(1)首先必须解决如何侧得质量和重力。所以需要的测量工具有:天平和测力计。(2)G/m的平均值为:9.8。(3)由于侧得的G/m比值保持不变,说明物体的重力与质量成正比。

点评:这一题主要考察考生实验的基本技能:主要有三个方面:仪器的选取,实验数据的处理以及根据侧得的数据进行推理,得出结论的能力。

例2:(05.大连)为了测定木块所受到的摩擦力,两个实验小组分别设计了甲、乙两种实验方案,实验装置如图所示,实验中不计弹簧测力计的重力。

   甲方案:在水平实验桌面上将木版用线拉住,通过弹簧侧力计沿木板方向水平拉木块,使木块在木板上面滑动。

   乙方案;将木板放在水平实验桌面上,用线通过弹簧测力计水平地拉住木块,沿木板方向水平拉木板,使木板在木块下面滑动。

(1)从实验操作方面考虑,应选择           方案,简述你的理由。

(2)从实验误差方面考虑,应选择           方案,简述你的理由。

分析与解:原理:甲方案:对摩擦力的测量是采用“间接法”进行的,只有当弹簧秤拉动木块匀速运动时,拉力才与摩擦力成为一对平衡力,它们大小相等。乙方案:拉动木板时,木块受到向左的摩擦力,由于木块相对地面静止,则摩擦力与弹簧秤的拉力是一对平衡力。

  1. 从实验操作方面来看:应选择乙方案,因为在甲方案中,要保持木块的匀速运动,不容易。乙方案,只需要拉动木板运动就行,不需要保持匀速运动。
  2. 从实验误差方面来看:应选择乙方案,因为在甲方案中,要保持木块的匀速运动中读数,不容易读得准确。乙方案中,弹簧秤是静止的,读数容易读得准确。

点评:一个实验设计,必须遵循科学性原则,简便性原则,可操作性原则以及准确性原则。这一考题正是考察考生在两个实验方案中,就可操作性以及准确性方面做出正确判断的能力。

例3:(05.温州)朱启南在雅典奥运会上打破男子10米气步枪世界记录并获得冠军。比赛中,他射出的子弹在空中高速飞行。下列对空中飞行的子弹受力分析正确的是

A、受到重力和空气的阻力         B、只受到空气的阻力

C、只受到枪膛内高温燃气的推力   D、只受到朱永启南的推力

分析与解:子弹飞出枪膛之前,受到枪膛内高温燃气的推动,子弹飞出枪膛以后,枪膛内高温燃气的推力就消失,子弹在空中高速飞行时,受到重力和空气阻力。

正确答案:A

点评:对空中飞行的物体进行受力分析时,往往只受重力和阻力作用,如果是质量较大低速运动的物体如投掷出去的铅球,空气阻力可以不记的。而向上的冲力或惯性力这些力,都是不存在的。

例4(05.北京)古代护城河上安装的吊桥可以看成一个以D为支点的杠杆,如图12-2所示。一个人通过定滑轮用力将吊桥由图示位置缓慢拉至竖直位置,若用 L表示绳对桥板的拉力F的力臂,则关于此过程中L的变化以及乘积FL的变化情况,下列说法正确的是(   ) 

  1. L始终在增加,FL始终在增加      
  2. L始终在增加,FL始终在减小 
  3. L先增加后减小,FL始终在减小    
  4. L先减小后增加,FL先减小后增加

分析与解:当吊桥被吊起的过程中,如图12-3中虚线位置(1)所示,吊桥重力的力臂l在减小,而吊绳的拉力的力臂L却在增大,根据杠杆的平衡条件:FL=Gl可知,FL在减小;当吊桥被吊到虚线位置(2)的过程,重力的力臂l变小,所以FL也在变小,而F的力臂L则由大变小。

  正确答案:C

点评:解决杠杆的问题,必须先确定杠杆的五要素,再根据题目的已知条件,结合杠杆的平衡条件,进行推断。对于动态变化的杠杆问题,(如上题)可以取变化过程中的几个状态进行分析比较,从而得出结论。

查看答案和解析>>

人教版第四章  物态变化 复习提纲

一、温度计

1、温度:表示物体的冷热程度。

2、摄氏温度:温度计上的字母C或℃表示的是摄氏温度。

摄氏温度的规定:在一个标准大气压下冰水混合物的温度是0摄氏度,沸水的温度是100摄氏度,0℃和100℃之间分成100等份,每等份代表1℃

3、温度计:测量温度的工具。

①原理:常用温度计是根据液体热胀冷缩的性质制成的。

②常用温度计种类:

A、实验用温度计:量程一般为-20℃—110℃,分度值为1℃,所装液体一般为水银或酒

B、寒暑表:量程一般为-30℃—50℃,分度值为1℃,所装液体一般为煤油或酒精。

C、体温计:量程为35℃—42℃,分度值为0.1℃ ,所装液体为水银。结构特点:玻璃泡和直玻璃管之间有一段非常细的缩口。体温计离开人体后缩口处的水银断开,直玻璃管内的水银不会退回玻璃泡内,这样体温计离开人体后仍然表示人体的温度。但是每次使用之前,应当把体温计中的水银甩下去(其他温度计不用甩)。刻度部分制成三棱柱形是利用放大镜原理。

③温度计的使用方法:

  1. 使用之前应观察它的量程和分度值。
  2. 使用时,温度计的玻璃泡全部浸入被测液体中,不要碰到容器底或容器壁。
  3. 温度计玻璃泡浸入被测液体后要稍侯一会儿,待温度计的示数稳定后再读数。
  4. 读数时温度计的玻璃泡继续留在液体可,视线要与温度计中液柱的上表面相平。

4、利用标准点法求正确温度

对刻度模糊的温度计和刻度不标准的温度计,根据它们的读数或水银柱的变化来确定正确的温度比较困难,可采用标准点法来确定正确的温度。其步骤为:A、确定标准点及其对应的两个实际温度;B、写出两标准点之间的格数变化或长度变化及与其对应的实际温度的变化;C、写出待求点与其中一个标准点之间的格数变化或长度变化及与其对应的待求温度与一个实际温度的变化;D、利用温度变化与格数变化或长度变化之比相等列出比例式;E、根据题意求解。

二、熔化和凝固

⑴、熔化

1、定义:物质从固态变成液态的过程叫做熔化。

2、固体分晶体和非晶体两类:有确定的熔化温度的固体叫晶体。常见的晶体:海波、冰、石英、水晶、食盐、明矾、萘、各种金属。没有确定的熔化温度的固体叫非晶体。常见的非晶体:松香、玻璃、蜂蜡、沥青等。

3、晶体的熔化:

①晶体在熔化过程中保持在一定的温度,这个温度叫熔点。

②晶体熔化的条件:温度达到熔点,继续吸热。

③晶体熔化的特点:晶体在熔化过程中吸热温度保持不变。

4、非晶体的熔化

①非晶体在熔化过程中没有一定的温度,温度会一直升高。

②非晶体熔化的特点:吸热,先变软,然后逐渐变稀成液态,温度不断长升高,没有固定的熔化温度。

⑵、凝固

1、定义:物质从液态变成固态的过程叫做凝固。

2、凝固点:液态晶体在凝固过程中保持一定的温度,这个温度叫凝固点。

3、液态晶体的凝固:液态晶体在凝固过程中放热温度保持不变。同一种物质的熔点就是它的凝固点。

4、非晶体的凝固:非晶体在凝固过程中没有一定的凝固点,温度会一直降低。

⑶、物体在熔过程中要吸热,在凝固过程中要放热,熔化和凝固互为逆过程。

⑷、温度为熔点的物质既可能是固态、液态,也可能是固液共存状态。

⑸、晶体和非晶体的异同

晶体

非晶体

相同点

状态

固体

固体

熔化过程

吸热

吸热

凝固过程

放热

放热

不同点

熔化过程中的温度

保持主变

不断升高

凝固过程中的温度

保持不变

不断降低

熔点和凝固点

熔化条件

温度达到熔点;继续吸热

持续吸热

凝固条件

温度达到凝固点;继续放热

持续放热

三、汽化和液化

1、汽化

①定义:物质从液态变为气态的过程叫汽化。

②汽化的两种方式:沸腾和蒸发

③沸腾:

A、沸腾是在一定温度下在液体内部和表面同时发生的剧烈的汽化现象。

B、沸点:液体沸腾时的温度叫沸点。不同的液体沸点不同;同一种液体的沸点还与上方的气压有关系。

C、液体沸腾的条件:一是温度达到沸点,二是需要继续吸热。

D、液体沸腾时吸热温度持在沸点不变。

④蒸发

  1. 蒸发是在任何温度下且只在液体表面发生的汽化现象。

B、发快慢的因素:液体的温度越高蒸发越快;液体的表面积越大蒸发越快;液体表面上的空气流动越快蒸发越快。

C、蒸发的特点:在任何温度下都能发生;只发生在液体表面;是一种缓慢的汽化现象;蒸发吸热。

D、蒸发致冷:是指液体蒸发时要从周围或自身吸收热量,从而使周围物体或自身温度下降。

⑤蒸发和沸腾的异同

蒸发

沸腾

共同点

都属于汽化现象,都要吸热

不同点

发生部位

液体表面

液体表面和内部

剧烈程度

缓慢

剧烈

发生条件

任何温度

达到沸点,继续吸热

温度变化

液体自身温度和它依附的物体温度下降

温度不变

影响因素

液体温度高低;液体表面积大小;液面上空气流动速度

液体表面上方气压的大小

⑥汽化吸热

2、液化:物质从气态变为液态的过程叫液化。

①液化的两种方法:降低温度;压缩体积。

②气体液化时要放热。

③常见的液化:雾和露的形成;冰棒周围的“白气”;冷饮瓶外的水滴。火箭上燃料“氢”和助推剂“氧”都是通过加压的方法变成液态氢和氧的。

3、电冰箱是根据液体蒸发吸热,气体压缩体积液化放热的原理制成的。

四、升华和凝华

1、升华:物质从固态直接变为气态的过程叫升华。

物质在升华过程中要吸收大量的热,有制冷作用。生活中可以利用升华吸热来得到低温。

常见的升华现象:樟脑丸先变小最后不见了;寒冷的冬天,积雪没有熔化却越来越少,最后不见了;用久的灯丝变细。

2、凝华:物质从气态直接变为固态的过程叫凝华。

物质在凝华过程中要放热。

常见的凝华现象:玻璃窗上的冰花;霜;用久的灯泡变黑;冰棒上的“白粉”。

五、解释物态变化时应注意的问题

1、解答问题的一般步骤:A、识别问题给出的初状态与末状态;B、根据有关的概念或规律寻找与其有关的物态变化过程;C、得出结论。

2、不要以错误的主观感觉作为判断依据,人们的一些主观感觉并不正确。

查看答案和解析>>

人教版第四章  物态变化 复习提纲

一、温度计

1、温度:表示物体的冷热程度。

2、摄氏温度:温度计上的字母C或℃表示的是摄氏温度。

摄氏温度的规定:在一个标准大气压下冰水混合物的温度是0摄氏度,沸水的温度是100摄氏度,0℃和100℃之间分成100等份,每等份代表1℃

3、温度计:测量温度的工具。

①原理:常用温度计是根据液体热胀冷缩的性质制成的。

②常用温度计种类:

A、实验用温度计:量程一般为-20℃—110℃,分度值为1℃,所装液体一般为水银或酒

B、寒暑表:量程一般为-30℃—50℃,分度值为1℃,所装液体一般为煤油或酒精。

C、体温计:量程为35℃—42℃,分度值为0.1℃ ,所装液体为水银。结构特点:玻璃泡和直玻璃管之间有一段非常细的缩口。体温计离开人体后缩口处的水银断开,直玻璃管内的水银不会退回玻璃泡内,这样体温计离开人体后仍然表示人体的温度。但是每次使用之前,应当把体温计中的水银甩下去(其他温度计不用甩)。刻度部分制成三棱柱形是利用放大镜原理。

③温度计的使用方法:

  1. 使用之前应观察它的量程和分度值。
  2. 使用时,温度计的玻璃泡全部浸入被测液体中,不要碰到容器底或容器壁。
  3. 温度计玻璃泡浸入被测液体后要稍侯一会儿,待温度计的示数稳定后再读数。
  4. 读数时温度计的玻璃泡继续留在液体可,视线要与温度计中液柱的上表面相平。

4、利用标准点法求正确温度

对刻度模糊的温度计和刻度不标准的温度计,根据它们的读数或水银柱的变化来确定正确的温度比较困难,可采用标准点法来确定正确的温度。其步骤为:A、确定标准点及其对应的两个实际温度;B、写出两标准点之间的格数变化或长度变化及与其对应的实际温度的变化;C、写出待求点与其中一个标准点之间的格数变化或长度变化及与其对应的待求温度与一个实际温度的变化;D、利用温度变化与格数变化或长度变化之比相等列出比例式;E、根据题意求解。

二、熔化和凝固

⑴、熔化

1、定义:物质从固态变成液态的过程叫做熔化。

2、固体分晶体和非晶体两类:有确定的熔化温度的固体叫晶体。常见的晶体:海波、冰、石英、水晶、食盐、明矾、萘、各种金属。没有确定的熔化温度的固体叫非晶体。常见的非晶体:松香、玻璃、蜂蜡、沥青等。

3、晶体的熔化:

①晶体在熔化过程中保持在一定的温度,这个温度叫熔点。

②晶体熔化的条件:温度达到熔点,继续吸热。

③晶体熔化的特点:晶体在熔化过程中吸热温度保持不变。

4、非晶体的熔化

①非晶体在熔化过程中没有一定的温度,温度会一直升高。

②非晶体熔化的特点:吸热,先变软,然后逐渐变稀成液态,温度不断长升高,没有固定的熔化温度。

⑵、凝固

1、定义:物质从液态变成固态的过程叫做凝固。

2、凝固点:液态晶体在凝固过程中保持一定的温度,这个温度叫凝固点。

3、液态晶体的凝固:液态晶体在凝固过程中放热温度保持不变。同一种物质的熔点就是它的凝固点。

4、非晶体的凝固:非晶体在凝固过程中没有一定的凝固点,温度会一直降低。

⑶、物体在熔过程中要吸热,在凝固过程中要放热,熔化和凝固互为逆过程。

⑷、温度为熔点的物质既可能是固态、液态,也可能是固液共存状态。

⑸、晶体和非晶体的异同

晶体

非晶体

相同点

状态

固体

固体

熔化过程

吸热

吸热

凝固过程

放热

放热

不同点

熔化过程中的温度

保持主变

不断升高

凝固过程中的温度

保持不变

不断降低

熔点和凝固点

熔化条件

温度达到熔点;继续吸热

持续吸热

凝固条件

温度达到凝固点;继续放热

持续放热

三、汽化和液化

1、汽化

①定义:物质从液态变为气态的过程叫汽化。

②汽化的两种方式:沸腾和蒸发

③沸腾:

A、沸腾是在一定温度下在液体内部和表面同时发生的剧烈的汽化现象。

B、沸点:液体沸腾时的温度叫沸点。不同的液体沸点不同;同一种液体的沸点还与上方的气压有关系。

C、液体沸腾的条件:一是温度达到沸点,二是需要继续吸热。

D、液体沸腾时吸热温度持在沸点不变。

④蒸发

  1. 蒸发是在任何温度下且只在液体表面发生的汽化现象。

B、发快慢的因素:液体的温度越高蒸发越快;液体的表面积越大蒸发越快;液体表面上的空气流动越快蒸发越快。

C、蒸发的特点:在任何温度下都能发生;只发生在液体表面;是一种缓慢的汽化现象;蒸发吸热。

D、蒸发致冷:是指液体蒸发时要从周围或自身吸收热量,从而使周围物体或自身温度下降。

⑤蒸发和沸腾的异同

蒸发

沸腾

共同点

都属于汽化现象,都要吸热

不同点

发生部位

液体表面

液体表面和内部

剧烈程度

缓慢

剧烈

发生条件

任何温度

达到沸点,继续吸热

温度变化

液体自身温度和它依附的物体温度下降

温度不变

影响因素

液体温度高低;液体表面积大小;液面上空气流动速度

液体表面上方气压的大小

⑥汽化吸热

2、液化:物质从气态变为液态的过程叫液化。

①液化的两种方法:降低温度;压缩体积。

②气体液化时要放热。

③常见的液化:雾和露的形成;冰棒周围的“白气”;冷饮瓶外的水滴。火箭上燃料“氢”和助推剂“氧”都是通过加压的方法变成液态氢和氧的。

3、电冰箱是根据液体蒸发吸热,气体压缩体积液化放热的原理制成的。

四、升华和凝华

1、升华:物质从固态直接变为气态的过程叫升华。

物质在升华过程中要吸收大量的热,有制冷作用。生活中可以利用升华吸热来得到低温。

常见的升华现象:樟脑丸先变小最后不见了;寒冷的冬天,积雪没有熔化却越来越少,最后不见了;用久的灯丝变细。

2、凝华:物质从气态直接变为固态的过程叫凝华。

物质在凝华过程中要放热。

常见的凝华现象:玻璃窗上的冰花;霜;用久的灯泡变黑;冰棒上的“白粉”。

五、解释物态变化时应注意的问题

1、解答问题的一般步骤:A、识别问题给出的初状态与末状态;B、根据有关的概念或规律寻找与其有关的物态变化过程;C、得出结论。

2、不要以错误的主观感觉作为判断依据,人们的一些主观感觉并不正确。

查看答案和解析>>

人教版第四章  物态变化 复习提纲

一、温度计

1、温度:表示物体的冷热程度。

2、摄氏温度:温度计上的字母C或℃表示的是摄氏温度。

摄氏温度的规定:在一个标准大气压下冰水混合物的温度是0摄氏度,沸水的温度是100摄氏度,0℃和100℃之间分成100等份,每等份代表1℃

3、温度计:测量温度的工具。

①原理:常用温度计是根据液体热胀冷缩的性质制成的。

②常用温度计种类:

A、实验用温度计:量程一般为-20℃—110℃,分度值为1℃,所装液体一般为水银或酒

B、寒暑表:量程一般为-30℃—50℃,分度值为1℃,所装液体一般为煤油或酒精。

C、体温计:量程为35℃—42℃,分度值为0.1℃ ,所装液体为水银。结构特点:玻璃泡和直玻璃管之间有一段非常细的缩口。体温计离开人体后缩口处的水银断开,直玻璃管内的水银不会退回玻璃泡内,这样体温计离开人体后仍然表示人体的温度。但是每次使用之前,应当把体温计中的水银甩下去(其他温度计不用甩)。刻度部分制成三棱柱形是利用放大镜原理。

③温度计的使用方法:

  1. 使用之前应观察它的量程和分度值。
  2. 使用时,温度计的玻璃泡全部浸入被测液体中,不要碰到容器底或容器壁。
  3. 温度计玻璃泡浸入被测液体后要稍侯一会儿,待温度计的示数稳定后再读数。
  4. 读数时温度计的玻璃泡继续留在液体可,视线要与温度计中液柱的上表面相平。

4、利用标准点法求正确温度

对刻度模糊的温度计和刻度不标准的温度计,根据它们的读数或水银柱的变化来确定正确的温度比较困难,可采用标准点法来确定正确的温度。其步骤为:A、确定标准点及其对应的两个实际温度;B、写出两标准点之间的格数变化或长度变化及与其对应的实际温度的变化;C、写出待求点与其中一个标准点之间的格数变化或长度变化及与其对应的待求温度与一个实际温度的变化;D、利用温度变化与格数变化或长度变化之比相等列出比例式;E、根据题意求解。

二、熔化和凝固

⑴、熔化

1、定义:物质从固态变成液态的过程叫做熔化。

2、固体分晶体和非晶体两类:有确定的熔化温度的固体叫晶体。常见的晶体:海波、冰、石英、水晶、食盐、明矾、萘、各种金属。没有确定的熔化温度的固体叫非晶体。常见的非晶体:松香、玻璃、蜂蜡、沥青等。

3、晶体的熔化:

①晶体在熔化过程中保持在一定的温度,这个温度叫熔点。

②晶体熔化的条件:温度达到熔点,继续吸热。

③晶体熔化的特点:晶体在熔化过程中吸热温度保持不变。

4、非晶体的熔化

①非晶体在熔化过程中没有一定的温度,温度会一直升高。

②非晶体熔化的特点:吸热,先变软,然后逐渐变稀成液态,温度不断长升高,没有固定的熔化温度。

⑵、凝固

1、定义:物质从液态变成固态的过程叫做凝固。

2、凝固点:液态晶体在凝固过程中保持一定的温度,这个温度叫凝固点。

3、液态晶体的凝固:液态晶体在凝固过程中放热温度保持不变。同一种物质的熔点就是它的凝固点。

4、非晶体的凝固:非晶体在凝固过程中没有一定的凝固点,温度会一直降低。

⑶、物体在熔过程中要吸热,在凝固过程中要放热,熔化和凝固互为逆过程。

⑷、温度为熔点的物质既可能是固态、液态,也可能是固液共存状态。

⑸、晶体和非晶体的异同

晶体

非晶体

相同点

状态

固体

固体

熔化过程

吸热

吸热

凝固过程

放热

放热

不同点

熔化过程中的温度

保持主变

不断升高

凝固过程中的温度

保持不变

不断降低

熔点和凝固点

熔化条件

温度达到熔点;继续吸热

持续吸热

凝固条件

温度达到凝固点;继续放热

持续放热

三、汽化和液化

1、汽化

①定义:物质从液态变为气态的过程叫汽化。

②汽化的两种方式:沸腾和蒸发

③沸腾:

A、沸腾是在一定温度下在液体内部和表面同时发生的剧烈的汽化现象。

B、沸点:液体沸腾时的温度叫沸点。不同的液体沸点不同;同一种液体的沸点还与上方的气压有关系。

C、液体沸腾的条件:一是温度达到沸点,二是需要继续吸热。

D、液体沸腾时吸热温度持在沸点不变。

④蒸发

  1. 蒸发是在任何温度下且只在液体表面发生的汽化现象。

B、发快慢的因素:液体的温度越高蒸发越快;液体的表面积越大蒸发越快;液体表面上的空气流动越快蒸发越快。

C、蒸发的特点:在任何温度下都能发生;只发生在液体表面;是一种缓慢的汽化现象;蒸发吸热。

D、蒸发致冷:是指液体蒸发时要从周围或自身吸收热量,从而使周围物体或自身温度下降。

⑤蒸发和沸腾的异同

蒸发

沸腾

共同点

都属于汽化现象,都要吸热

不同点

发生部位

液体表面

液体表面和内部

剧烈程度

缓慢

剧烈

发生条件

任何温度

达到沸点,继续吸热

温度变化

液体自身温度和它依附的物体温度下降

温度不变

影响因素

液体温度高低;液体表面积大小;液面上空气流动速度

液体表面上方气压的大小

⑥汽化吸热

2、液化:物质从气态变为液态的过程叫液化。

①液化的两种方法:降低温度;压缩体积。

②气体液化时要放热。

③常见的液化:雾和露的形成;冰棒周围的“白气”;冷饮瓶外的水滴。火箭上燃料“氢”和助推剂“氧”都是通过加压的方法变成液态氢和氧的。

3、电冰箱是根据液体蒸发吸热,气体压缩体积液化放热的原理制成的。

四、升华和凝华

1、升华:物质从固态直接变为气态的过程叫升华。

物质在升华过程中要吸收大量的热,有制冷作用。生活中可以利用升华吸热来得到低温。

常见的升华现象:樟脑丸先变小最后不见了;寒冷的冬天,积雪没有熔化却越来越少,最后不见了;用久的灯丝变细。

2、凝华:物质从气态直接变为固态的过程叫凝华。

物质在凝华过程中要放热。

常见的凝华现象:玻璃窗上的冰花;霜;用久的灯泡变黑;冰棒上的“白粉”。

五、解释物态变化时应注意的问题

1、解答问题的一般步骤:A、识别问题给出的初状态与末状态;B、根据有关的概念或规律寻找与其有关的物态变化过程;C、得出结论。

2、不要以错误的主观感觉作为判断依据,人们的一些主观感觉并不正确。

查看答案和解析>>

人教版第十一章  多彩的物质世界提纲 

  

一、宇宙和微观世界

   1.宇宙由物质组成。

   2.物质是由分子组成的:任何物质都是由极其微小的粒子组成的,这些粒子保持了物质原来的性质。

   3.固态、液态、气态的微观模型:固态物质中,分子与分子的排列十分紧密有规则,粒子间有强大的作用力将分子凝聚在一起。分子来回振动,但位置相对稳定。因此,固体具有一定的体积和形状。液态物质中,分子没有固定的位置,运动比较自由,粒子间的作用力比固体小。因此,液体没有确定的形状,具有流动性。气态物质中,分子间距很大,并以高速向四面八方运动,粒子之间的作用力很小,易被压缩。因此,气体具有很强的流动性。

   4.原子结构。

  5.纳米科学技术。

   二、质量

   1.定义:物体所含物质的多少叫质量。

   2.单位:国际单位制:主单位kg,常用单位:t g mg

  对质量的感性认识:一枚大头针约80mg;一个苹果约150g;一头大象约6t;一只鸡约2kg。

   3.质量的理解:固体的质量不随物体的形态、状态、位置、温度而改变,所以质量是物体本身的一种属性。

   4.测量:

   ⑴日常生活中常用的测量工具:案秤、台秤、杆秤,实验室常用的测量工具托盘天平,也可用弹簧测力计测出物重,再通过公式m=G/g计算出物体质量。

   ⑵托盘天平的使用方法:二十四个字:水平台上,游码归零,横梁平衡,左物右砝,先大后小,横梁平衡。具体如下:

   ①“看”:观察天平的称量以及游码在标尺上的分度值。

   ②“放”:把天平放在水平台上,把游码放在标尺左端的零刻度线处。

   ③“调”:调节天平横梁右端的平衡螺母使指针指在分度盘的中线处,这时横梁平衡。

   ④“称”:把被测物体放在左盘里,用镊子向右盘里加减砝码,并调节游码在标尺上的位置,直到横梁恢复平衡。

   ⑤“记”:被测物体的质量=盘中砝码总质量+游码在标尺上所对的刻度值。

  ⑥注意事项:A、不能超过天平的称量;B、保持天平干燥、清洁。

   ⑶方法:A、直接测量:固体的质量;B、特殊测量:液体的质量、微小质量。

二、密度

   1.定义:单位体积的某种物质的质量叫做这种物质的密度。

   2.公式:  变形

   3.单位:国际单位制:主单位kg/m3,常用单位g/cm3。

     这两个单位比较:g/cm3单位大。

单位换算关系:1g/cm3=103kg/m3;1kg/m3=10-3g/cm3。

水的密度为1.0×103kg/m3,读作1.0×103千克每立方米,它表示物理意义是:1立方米的水的质量为1.0×103千克。

   4.理解密度公式

   ⑴同种材料,同种物质,不变,m与V成正比;物体的密度与物体的质量、体积、形状无关,但与质量和体积的比值有关;密度随温度、压强、状态等改变而改变,不同物质密度一般不同,所以密度是物质的一种特性。

   ⑵质量相同的不同物质,体积与密度成反比;体积相同的不同物质质量与密度成正比。

   5.图象:如图所示:甲>乙。

  6.测体积──量筒(量杯)

  ⑴用途:测量液体体积(间接地可测固体体积)。

  ⑵使用方法:

  “看”:单位:毫升(ml)=厘米3 (cm3)量程、分度值。 

  “放”:放在水平台上。

“读”:量筒里地水面是凹形的,读数时,视线要和凹面的底部相平。

7.测固体的密度:

 

 说明:在测不规则固体体积时,采用排液法测量,这里采用了一种科学方法等效代替法。

  

8.测液体密度:

  1)公式法:天平测液体质量,用量筒测其体积。

⑴原理:

  ⑵方法:①用天平测液体和烧杯的总质量m1 ;②把烧杯中的液体倒入量筒中一部分,读出量筒内液体的体积V;③称出烧杯和杯中剩余液体的质量m2 ;④得出液体的密度=(m1-m2)/V

 2)等容法:没有量筒或量杯,可借水和其他容器来测。

  3)浮力法:在没有天平、量筒的条件下,可借助弹簧秤来测量,如用线将铁块系在弹簧秤下读出,铁块浸在空气和浸没水中的示数G,,则,再将铁块挂在弹簧秤下,浸没在待测液体中

 9.密度的应用:

  ⑴鉴别物质:密度是物质的特性之一,不同物质密度一般不同,可用密度鉴别物质。

  ⑵求质量:由于条件限制,有些物体体积容易测量但不便测量质量用公式算出它的质量。

  ⑶求体积:由于条件限制,有些物体质量容易测量但不便测量体积用公式算出它的体积。

  ⑷判断空心实心。

查看答案和解析>>


同步练习册答案