3.古典概型:满足以下两个条件的随机试验的概率模型称为古典概型①所有的基本事件只有有限个,②每个基本事件的发生都是等可能的, 查看更多

 

题目列表(包括答案和解析)

某中学研究性学习小组,为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了 50名学生.调査结果表明:在爱看课外书的25人中有18人作文水平好,另7人作文水平一般;在不爱看课外书的25人中有6人作文水平好,另19人作文水平一般.

(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系?

高中学生的作文水平与爱看课外书的2×2列联表

 

爱看课外书

不爱看课外书

总计

作文水平好

 

 

 

作文水平一般

 

 

 

总计

 

 

 

(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为1、2、3、4、5,某5名爱看课外书且作文水平一般的学生也分别编号为1、2、3、4、5,从这两组学生中各任选1人进行学习交流,求被选取的两名学生的编号之和为3的倍数或4的倍数的概率.

参考公式:,其中.

参考数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【解析】本试题主要考查了古典概型和列联表中独立性检验的运用。结合公式为判定两个分类变量的相关性,

第二问中,确定

结合互斥事件的概率求解得到。

解:因为2×2列联表如下

 

爱看课外书

不爱看课外书

总计

作文水平好

 18

 6

 24

作文水平一般

 7

 19

 26

总计

 25

 25

 50

 

查看答案和解析>>

14、下面是古典概型的是(  )

查看答案和解析>>

给出下列命题:①掷两枚硬币,可出现“两个正面”、“两个反面”、“一正一反”三种等可能结果
②某袋中装有大小均匀的三个红球、两个黑球、一个白球,任取一球,那么每种颜色的球被摸到的可能性不相等;
③分别从3名男同学、4名女同学中各选一名代表,男、女同学当选的可能性相同;
④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是古典概型.
其中所有错误命题的序号为
①③④
①③④

查看答案和解析>>

下列说法中正确的有(  )
①平均数不受少数几个极端值的影响,中位数受样本中的每一个数据影响;
②抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大
③用样本的频率分布估计总体分布的过程中,样本容量越大,估计越准确.
④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是古典概型.
A、①②B、③C、③④D、④

查看答案和解析>>

已知下列命题:
?y
=8x+56
意味着x每增加一个单位,y平均增加8个单位
②投掷一颗骰子实验,有掷出的点数为奇数和掷出的点数为偶数两个基本事件
③互斥事件不一定是对立事件,但对立事件一定是互斥事件
④在适宜的条件下种下一颗种子,观察它是否发芽,这个实验为古典概型
其中正确的命题有
①③
①③

查看答案和解析>>


同步练习册答案