当时.不等式 即为. 查看更多

 

题目列表(包括答案和解析)

解关于的不等式:

【解析】解:当时,原不等式可变为,即            (2分)

 当时,原不等式可变为         (5分)  若时,的解为            (7分)

 若时,的解为         (9分) 若时,无解(10分) 若时,的解为  (12分综上所述

时,原不等式的解为

时,原不等式的解为

时,原不等式的解为

时,原不等式的解为

时,原不等式的解为:

 

查看答案和解析>>

已知函数=.

(Ⅰ)当时,求不等式 ≥3的解集;

(Ⅱ) 若的解集包含,求的取值范围.

【命题意图】本题主要考查含绝对值不等式的解法,是简单题.

【解析】(Ⅰ)当时,=

≤2时,由≥3得,解得≤1;

当2<<3时,≥3,无解;

≥3时,由≥3得≥3,解得≥8,

≥3的解集为{|≤1或≥8};

(Ⅱ)

∈[1,2]时,==2,

,有条件得,即

故满足条件的的取值范围为[-3,0]

 

查看答案和解析>>

已知,设是方程的两个根,不等式对任意实数恒成立;函数有两个不同的零点.求使“P且Q”为真命题的实数的取值范围.

【解析】本试题主要考查了命题和函数零点的运用。由题设x1+x2=a,x1x2=-2,

∴|x1-x2|=.

当a∈[1,2]时,的最小值为3. 当a∈[1,2]时,的最小值为3.

要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判别式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”为真命题,只需P真Q真即可。

解:由题设x1+x2=a,x1x2=-2,

∴|x1-x2|=.

当a∈[1,2]时,的最小值为3.

要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判别式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

综上,要使“P∧Q”为真命题,只需P真Q真,即

解得实数m的取值范围是(4,8]

 

查看答案和解析>>

给出下列命题:

①a,b都为正数时,不等式a+b≥2才成立。

②y=x+的最小值为2。

③y=sinx+()的最小值为2.

④当x>0时,y=x2+16x≥2,当x2=16x时,即x=16,y取最小值512。

其中错误的命题是          

查看答案和解析>>

 给出下列命题:

①a,b都为正数时,不等式a+b≥2才成立。

②y=x+的最小值为2。

③y=sinx+()的最小值为2.

④当x>0时,y=x2+16x≥2,当x2=16x时,即x=16,y取最小值512。

其中错误的命题是          

 

查看答案和解析>>


同步练习册答案