证明:由题意可知. 查看更多

 

题目列表(包括答案和解析)

(1)利用函数单调性的定义证明函数h(x)=x+
3
x
在[
3
,∞)
上是增函数;
(2)我们可将问题(1)的情况推广到以下一般性的正确结论:已知函数y=x+
t
x
有如下性质:如果常数t>0,那么该函数在(0,
t
]
上是减函数,在[
t
,+∞)
上是增函数.
若已知函数f(x)=
4x2-12x-3
2x+1
,x∈[0,1],利用上述性质求出函数f(x)的单调区间;又已知函数g(x)=-x-2a,问是否存在这样的实数a,使得对于任意的x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,若不存在,请说明理由;如存在,请求出这样的实数a的值.

查看答案和解析>>

如图,D,E分别是△ABC边AB,AC的中点,直线DE交△ABC的外接圆与F,G两点,若CF∥AB,证明:

(Ⅰ) CD=BC;

(Ⅱ)△BCD∽△GBD.

【命题意图】本题主要考查线线平行判定、三角形相似的判定等基础知识,是简单题.

【解析】(Ⅰ) ∵D,E分别为AB,AC的中点,∴DE∥BC,

∵CF∥AB,   ∴BCFD是平行四边形,

∴CF=BD=AD,   连结AF,∴ADCF是平行四边形,

∴CD=AF,

∵CF∥AB, ∴BC=AF, ∴CD=BC;

(Ⅱ) ∵FG∥BC,∴GB=CF,

由(Ⅰ)可知BD=CF,∴GB=BD,

∵∠DGB=∠EFC=∠DBC, ∴△BCD∽△GBD

 

查看答案和解析>>

(本小题满分14分)
在数列中,已知,其中
(I)若,求数列的前n项和;
(II)证明:当时,数列中的任意三项都不能构成等比数列;
(III)设集合,试问在区间[1,a]上是否存在实数b使得,若存在,求出b的一切可能的取值及相应的集合C;若不存在,说明理由。

查看答案和解析>>

(本小题满分14分)

        在数列中,已知,其中

   (I)若,求数列的前n项和;

   (II)证明:当时,数列中的任意三项都不能构成等比数列;

   (III)设集合,试问在区间[1,a]上是否存在实数b使得,若存在,求出b的一切可能的取值及相应的集合C;若不存在,说明理由。

 

查看答案和解析>>

(本小题满分14分)
在数列中,已知,其中
(I)若,求数列的前n项和;
(II)证明:当时,数列中的任意三项都不能构成等比数列;
(III)设集合,试问在区间[1,a]上是否存在实数b使得,若存在,求出b的一切可能的取值及相应的集合C;若不存在,说明理由。

查看答案和解析>>


同步练习册答案