某城市有甲.乙.丙3个旅游景点.一位客人游览这三个景点的概率分别是0.4.0.5.0.6.且客人是否游览哪个景点互不影响.设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.(Ⅰ)求ξ的分布及数学期望,(Ⅱ)记“函数f(x)=x2-3ξx+1在区间[2.+∞上单调递增 为事件A.求事件A的概率. 查看更多

 

题目列表(包括答案和解析)

某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.
(Ⅰ)求ξ的分布及数学期望;
(Ⅱ)记“函数f(x)=x2-3ξx+1在区间[2,+∞)上单调递增”为事件A,求事件A的概率.

查看答案和解析>>

某城市有甲、乙、丙3个旅游景点,一位客人游览这3个景点的概率分别为0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.
(1)求ξ的分布;
(2)求ξ的数学期望及方差;
(3)记“函数f(x)=x2-2ξx+lnx是单调增函数”为事件A,求事件A的概率.
(可能用到的数据:0.762≈0.58,0.482≈0.23,1.522≈2.31,0.242≈0.06)

查看答案和解析>>

某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.

(Ⅰ)求ξ的分布及数学期望;

(Ⅱ)记“函数f(x)=x2-3ξx+1在区间[2,+∞)上单调递增”为事件A,求事件A的概率.

查看答案和解析>>

某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.

(1)求ξ的分布及数学期望;

(2)记“函数f(x)=x2-3ξx+1在区间[2,+∞)上单调递增”为事件A,求事件A的概率.

查看答案和解析>>

某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响.
(1)求客人游览2个景点的概率;
(2)设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值,求ξ的分布及数学期望.

查看答案和解析>>

 

一、选择题:1―5:BACCB   6―10: CDDBA

二、填空题:

11.5600   12.35  13.   14.-2   15.,  

三、解答题:

16.解法一  由

       得

       所以

       即

       因为所以,从而

       由知 从而.

       由

       即

       由此得所以

解法二:由

       由、,所以

       即

       由得

       所以

       即            因为,所以

 

       由从而,知B+2C=不合要求.

       再由,得  所以

17.解法一(I)证明 由题设知OA⊥OO1,OB⊥OO1.

       所以∠AOB是所折成的直二面角的平面角,即OA⊥OB. 故可以O为原点,OA、OB、OO1所在直线分别为轴、y轴、z轴建立空间直角坐标系,

       如图3,则相关各点的坐标是A(3,0,0),B(0,3,0),C(0,1,),O1(0,0,).从而所以AC⊥BO1.

(II)解:因为所以BO1⊥OC,

由(I)AC⊥BO1,所以BO1⊥平面OAC,是平面OAC的一个法向量. 设是0平面O1AC的一个法向量,

由    得.

设二面角O―AC―O1的大小为,由、的方向可知,>,

       所以cos,>=

       即二面角O―AC―O1的大小是

解法二(I)证明 由题设知OA⊥OO1,OB⊥OO1

   所以∠AOB是所折成的直二面角的平面角,

       即OA⊥OB. 从而AO⊥平面OBCO1

       OC是AC在面OBCO1内的射影.

       因为    ,

       所以∠OO1B=60°,∠O1OC=30°,从而OC⊥BO1

       由三垂线定理得AC⊥BO1.

(II)解 由(I)AC⊥BO1,OC⊥BO1,知BO1⊥平面AOC.

       设OC∩O1B=E,过点E作EF⊥AC于F,连结O1F(如图4),则EF是O1F在平面AOC

       内的射影,由三垂线定理得O1F⊥AC.

       所以∠O1FE是二面角O―AC―O1的平面角.

       由题设知OA=3,OO1=,O1C=1,

       所以,

       从而,    又O1E=OO1?sin30°=,

        所以  即二面角O―AC―O1的大小是

18.解:(I)分别记“客人游览甲景点”,“客人游览乙景点”,“客人游览丙景点”

        为事件A1,A2,A3. 由已知A1,A2,A3相互独立,P(A1)=0.4,P(A2)=0.5,

       P(A3)=0.6.

       客人游览的景点数的可能取值为0,1,2,3. 相应地,客人没有游览的景点数的可能取

       值为3,2,1,0,所以的可能取值为1,3.

       P(=3)=P(A1?A2?A3)+ P()

= P(A1)P(A2)P(A3)+P()

=2×0.4×0.5×0.6=0.24,

1    

3  

P

0.76

0.24

 

       所以的分布列为

        E=1×0.76+3×0.24=1.48.

(Ⅱ)解法一  因为

所以函数上单调递增,

要使上单调递增,当且仅当

从而

解法二:的可能取值为1,3.

当=1时,函数上单调递增,

当=3时,函数上不单调递增.0

所以

19.(Ⅰ)证法一:因为A、B分别是直线l:与x轴、y轴的交点,所以A、B的坐标分别是.

    所以点M的坐标是().    由

    证法二:因为A、B分别是直线l:与x轴、y轴的交点,所以A、B的坐标分别是设M的坐标是

所以      因为点M在椭圆上,所以 

   解得

   (Ⅱ)解法一:因为PF1l,所以∠PF1F2=90°+∠BAF1为钝角,要使△PF1F2为等腰三角形,必有|PF1|=|F1F2|,即

    设点F1l的距离为d,由

    得   所以

    即当△PF1F­2­­为等腰三角形.

解法二:因为PF1l,所以∠PF1F2=90°+∠BAF1为钝角,要使△PF1F2为等腰三角形,必有|PF1|=|F1F2|,

设点P的坐标是,

由|PF1|=|F1F2|得

两边同时除以4a2,化简得  从而

于是.    即当时,△PF1F2为等腰三角形.

20.解(I)从第n年初到第n+1年初,鱼群的繁殖量为axn,被捕捞量为bxn,死亡量为

   (II)若每年年初鱼群总量保持不变,则xn恒等于x1, n∈N*,从而由(*)式得

       

        因为x1>0,所以a>b.

        猜测:当且仅当a>b,且时,每年年初鱼群的总量保持不变.

   (Ⅲ)若b的值使得xn>0,n∈N*

         由xn+1=xn(3-b-xn), n∈N*, 知

         0<xn<3-b, n∈N*, 特别地,有0<x1<3-b. 即0<b<3-x1.

        而x1∈(0, 2),所以

        由此猜测b的最大允许值是1.

        下证 当x1∈(0, 2) ,b=1时,都有xn∈(0, 2), n∈N*

        ①当n=1时,结论显然成立.

②假设当n=k时结论成立,即xk∈(0, 2),

则当n=k+1时,xk+1=xk(2-xk­)>0.

又因为xk+1=xk(2-xk)=-(xk-1)2+1≤1<2,

所以xk+1∈(0, 2),故当n=k+1时结论也成立.

由①、②可知,对于任意的n∈N*,都有xn∈(0,2).

综上所述,为保证对任意x1∈(0, 2), 都有xn>0, n∈N*,则捕捞强度b的最大允许值是1.

21.解:(I),

因为函数h(x)存在单调递减区间,所以<0有解.

又因为x>0时,则ax2+2x-1>0有x>0的解.

①当a>0时,y=ax2+2x-1为开口向上的抛物线,ax2+2x-1>0总有x>0的解;

②当a<0时,y=ax2+2x-1为开口向下的抛物线,而ax2+2x-1>0总有x>0的解;

  则△=4+4a>0,且方程ax2+2x-1=0至少有一正根.此时,-1<a<0.

  综上所述,a的取值范围为(-1,0)∪(0,+∞).

   (II)证法一  设点P、Q的坐标分别是(x1, y1),(x2, y2),0<x1<x2.

         则点M、N的横坐标为

         C1在点M处的切线斜率为

         C2在点N处的切线斜率为

         假设C1在点M处的切线与C2在点N处的切线平行,则k1=k2.

         即,则

                 =

       所以  设则①

       令则

       因为时,,所以在)上单调递增. 故

       则. 这与①矛盾,假设不成立.

       故C1在点M处的切线与C2在点N处的切线不平行.

证法二:同证法一得

       因为,所以

       令,得  ②

       令

       因为,所以时,

       故在[1,+上单调递增.从而,即

       于是在[1,+上单调递增.

       故即这与②矛盾,假设不成立.

       故C1在点M处的切线与C2在点N处的切线不平行.

 


同步练习册答案