题目列表(包括答案和解析)
已知函数f(x)=ax2+ax和g(x)=x-a.其中a∈R且a≠0.
(1)若函数f(x)与g(x)的图像的一个公共点恰好在x轴上,求a的值;
(2)若函数f(x)与g(x)图像相交于不同的两点A、B,O为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的a的值;如果没有,请说明理由.
(3)若p和q是方程f(x)-g(x)=0的两根,且满足0<p<q<,证明:当x∈(0,p)时,g(x)<f(x)<p-a.
定义在D上的函数f(x),如果满足:,常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数的上界.
(Ⅰ)试判断函数在[1,3]上是不是有界函数?请给出证明;
(Ⅱ)若已知质点的运动方程为,要使在t∈[0,+∞]上的每一时刻的瞬时速度是以M=1为上界的有界函数,求实数a的取值范围.
|
定义在D上的函数f(x),如果满足:,常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数的上界.
(Ⅰ)求函数在[1,3]上的最大值与最小值,并判断函数在[1,3]上是不是有界函数?请给出证明;
(Ⅱ)若已知质点的运动方程为,要使在t∈[0,+∞)上的每一时刻的瞬时速度是以M=1为上界的有界函数,求实数a的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com