证法一:(I)任取 查看更多

 

题目列表(包括答案和解析)

己知函数f(x)=,AR.

1)证明:函数y=f(x)的图象关于点(A,1)成中心对称图形;

 (2) x[A+1,A+2]时,求证:f(x) [2,];

 (3)我们利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,x2=f(x1),x3=f(x2),…xn=f(xn1),….

在上述构造数列的过程中,如果xi+(I=2,,3,4,…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.

如果可以用上述方法构造出一个常数列{xn},求实数A的取值范围;

如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{ xn},求实数A的值.

查看答案和解析>>

己知函数f(x)=,AR.

1)证明:函数y=f(x)的图象关于点(A,1)成中心对称图形;

 (2) x[A+1,A+2]时,求证:f(x) [2,];

 (3)我们利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,x2=f(x1),x3=f(x2),…xn=f(xn1),….

在上述构造数列的过程中,如果xi+(I=2,,3,4,…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.

如果可以用上述方法构造出一个常数列{xn},求实数A的取值范围;

如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{ xn},求实数A的值.

查看答案和解析>>

设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.

  (I)证明:对任意的∈(O,1),,若f()≥f(),则(0,)为含峰区间:若f()f(),则为含峰区间:

  (II)对给定的r(0<r<0.5),证明:存在∈(0,1),满足,使得由(I)所确定的含峰区间的长度不大于0.5+r:

  (III)选取∈(O,1),,由(I)可确定含峰区间为,在所得的含峰区间内选取,由类似地可确定一个新的含峰区间,在第一次确定的含峰区间为(0,)的情况下,试确定的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0. 34(区间长度等于区间的右端点与左端点之差)

 

查看答案和解析>>

设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(I)证明:对任意的∈(O,1),,若f()≥f(),则(0,)为含峰区间:若f()f(),则为含峰区间:
(II)对给定的r(0<r<0.5),证明:存在∈(0,1),满足,使得由(I)所确定的含峰区间的长度不大于0.5+r:
(III)选取∈(O,1),,由(I)可确定含峰区间为,在所得的含峰区间内选取,由类似地可确定一个新的含峰区间,在第一次确定的含峰区间为(0,)的情况下,试确定的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0. 34(区间长度等于区间的右端点与左端点之差)

查看答案和解析>>

(20)设f(x)是定义在[0, 1]上的函数,若存在x*∈(0,1),使得f(x)在[0, x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0, 1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.

    对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.

(I)证明:对任意的x1x2∈(0,1),x1x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x1,1)为含峰区间;

(II)对给定的r(0<r<0.5),证明:存在x1x2∈(0,1),满足x2x1≥2r,使得由(I)所确定的含峰区间的长度不大于 0.5+r;

(III)选取x1x2∈(0, 1),x1x2,由(I)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3x1x3x2类似地可确定一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1x2x3的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0.34.

(区间长度等于区间的右端点与左端点之差)

查看答案和解析>>


同步练习册答案