题目列表(包括答案和解析)
已知中心在坐标原点,焦点在轴上的椭圆C;其长轴长等于4,离心率为.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.
【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。
第一问中,可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又,所以,
又由于
所求椭圆C的标准方程为
第二问中,
假设存在这样的直线,设,MN的中点为
因为|ME|=|NE|所以MNEF所以
(i)其中若时,则K=0,显然直线符合题意;
(ii)下面仅考虑情形:
由,得,
,得
代入1,2式中得到范围。
(Ⅰ) 可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又,所以,
又由于
所求椭圆C的标准方程为
(Ⅱ) 假设存在这样的直线,设,MN的中点为
因为|ME|=|NE|所以MNEF所以
(i)其中若时,则K=0,显然直线符合题意;
(ii)下面仅考虑情形:
由,得,
,得……② ……………………9分
则.
代入①式得,解得………………………………………12分
代入②式得,得.
综上(i)(ii)可知,存在这样的直线,其斜率k的取值范围是
解关于的不等式:
【解析】解:当时,原不等式可变为,即 (2分)
当时,原不等式可变为 (5分) 若时,的解为 (7分)
若时,的解为 (9分) 若时,无解(10分) 若时,的解为 (12分综上所述
当时,原不等式的解为
当时,原不等式的解为
当时,原不等式的解为
当时,原不等式的解为
当时,原不等式的解为:
要证,只需证,即需,即需证,即证35>11,因为35>11显然成立,所以原不等式成立。以上证明运用了
A.比较法 B.综合法 C.分析法 D.反证法
要证,只需证,即需,即需证,即证35>11,因为35>11显然成立,所以原不等式成立。以上证明运用了
A.比较法 | B.综合法 | C.分析法 | D.反证法 |
A.比较法 | B.综合法 | C.分析法 | D.反证法 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com