(2)在线段上是否存在点.使直线与垂直. 查看更多

 

题目列表(包括答案和解析)

已知定点,动点B是圆FF为圆心)上一点,线段AB的垂直平分线交BFP

(Ⅰ)求动点P的轨迹方程;

(Ⅱ)直线P点的轨迹于MN两点,若P点的轨迹上存在点C,使

,求实数m的值;

(Ⅲ)是否存在过点的直线lP点的轨迹于点RT,且满足O为原点)?若存在,求直线l的方程,若不存在,请说明理由。

查看答案和解析>>

定长为3的线段两端点分别在轴,轴上滑动,在线段上,且

(1)求点的轨迹的方程.

(2)设过且不垂直于坐标轴的直线交轨迹两点.问:线段上是否存在一点,使得以为邻边的平行四边形为菱形?作出判断并证明.

 

查看答案和解析>>

 如图1,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)

(1)求抛物线的解析式

(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.

(3)如图3,抛物线上是否存在一点,过点轴的垂线,垂足为,过点作直线,交线段于点,连接,使,若存在,求出点的坐标;若不存在,说明理由.

       图1                        图2                          图3

 

 

 

 

 

 

查看答案和解析>>

定长为3的线段AB两端点A,B分别在x轴,y轴上滑动,M在线段AB上,且
(1)求点M的轨迹C的方程;
(2)设过且不垂直于坐标轴的直线交轨迹C与A,B两点。问:线段OF上是否存在一点D,使得以DA,DB为邻边的平行四边形为菱形?作出判断并证明。

查看答案和解析>>

已知点和抛物线的焦点关于轴对称,点是以点为圆心,4为半径的上任意一点,线段的垂直平分线与线段交于点,设点的轨迹为曲线

求抛物线和曲线的方程;

是否存在直线,使得直线分别与抛物线及曲线均只有一个公共点,若存在,求出所有这样的直线的方程,若不存在,请说明理由.

查看答案和解析>>

 

说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.

      2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.

      3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.

4.只给整数分数,选择题和填空题不给中间分.

 

一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.

题号

1

2

3

4

5

6

7

8

答案

A

C

B

C

B

A

D

D

 

二、填空题:本大题共7小题,每小题5分,满分30分.其中13~15题是选做题,考生只能选做二题,三题全答的,只计算前二题得分.第12题第1个空3分,第2个空2分.

9.2          10.79         11.0 或 2       12.16,

13.1         14.3          15.6

三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.

16.(本小题主要考查三角函数性质和三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力)

解:(1)

                 .                

∴函数的值域为.                                     

(2)∵,∴

都为锐角,∴

                    

                  

           

的值为.                                      

 

17.(本小题主要考查空间线面关系、几何体的表面积与体积等基本知识,考查数形结合的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)

解:(1)设,∵几何体的体积为

,                      

,解得

的长为4.                                           

(2)在线段上存在点,使直线垂直.     

以下给出两种证明方法:

方法1:过点的垂线交于点,过点 

于点

平面

平面,∴

,∴平面

平面,∴.      

在矩形中,∵

,即,∴

,∴,即,∴

中,∵,∴

由余弦定理,得

∴在线段上存在点,使直线垂直,且线段的长为

方法2:以点为坐标原点,分别以所在的直线为轴,轴,轴建立如图的空间直角坐标系,由已知条件与(1)可知,,  

假设在线段上存在点≤2,,0≤

使直线垂直,过点于点

 

,得

,∴

,∴.       

此时点的坐标为,在线段上.

,∴

∴在线段上存在点,使直线垂直,且线段的长为

18.(本小题主要考查等差数列、等比数列的通项公式与前项和公式等基础知识,考查化归与转化、分类与整合的数学思想方法,以及推理论证能力和运算求解能力)

解:设等比数列的首项为,公比为

成等差数列,

,∴

解得.             

时,∵,         

∴当时,不成等差数列.

时,成等差数列.下面给出两种证明方法.

证法1:∵

                            

                            

∴当时,成等差数列.

证法2:∵,          

              , 

∴当时,成等差数列. 

19.(本小题主要考查等可能事件、互斥事件和独立重复试验等基础知识,考查化归与转化的数学思想方法,以及推理论证能力和运算求解能力)

解:(1)∵一次摸球从个球中任选两个,有种选法,                         

任何一个球被选出都是等可能的,其中两球颜色相同有种选法,

∴一次摸球中奖的概率.             

(2)若,则一次摸球中奖的概率,                  

三次摸球是独立重复试验,三次摸球恰有一次中奖的概率是

.                                    

(3)设一次摸球中奖的概率为,则三次摸球恰有一次中奖的概率为

上为增函数,在上为减函数.              

∴当时,取得最大值.

解得

故当时,三次摸球恰有一次中奖的概率最大.                 

 

20.(本小题主要考查函数的性质、函数与导数等知识,考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力和运算求解能力)

(1)解法1:∵,其定义域为,  

.                

是函数的极值点,∴,即.                                         

,∴.                                               

经检验当时,是函数的极值点,

.                                             

解法2:∵,其定义域为

.               

,即,整理,得

的两个实根(舍去),

变化时,的变化情况如下表:

0

极小值

依题意,,即

,∴.                           

(2)解:对任意的都有成立等价于对任意的都有.                       

[1,]时,

同步练习册答案