(D)如果.n共面.那么 查看更多

 

题目列表(包括答案和解析)

如果一个点是一个指数函数的图象与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点M(1,1),N(1,2),P(2,1),Q(2,2),G(2,0.5)中,“好点”的个数为(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

对于平面α和不重合的两条直线m、n,下列选项中正确的是( )
A.如果m?α,n∥α,m、n共面,那么m∥n
B.如果m?α,n与α相交,那么m、n是异面直线
C.如果m?α,n?α,m、n是异面直线,那么n∥α
D.如果m⊥α,n⊥m,那么n∥α

查看答案和解析>>

对于平面α和不重合的两条直线m、n,下列选项中正确的是( )
A.如果m?α,n∥α,m、n共面,那么m∥n
B.如果m?α,n与α相交,那么m、n是异面直线
C.如果m?α,n?α,m、n是异面直线,那么n∥α
D.如果m⊥α,n⊥m,那么n∥α

查看答案和解析>>

对于平面α和不重合的两条直线m、n,下列选项中正确的是( )
A.如果m?α,n∥α,m、n共面,那么m∥n
B.如果m?α,n与α相交,那么m、n是异面直线
C.如果m?α,n?α,m、n是异面直线,那么n∥α
D.如果m⊥α,n⊥m,那么n∥α

查看答案和解析>>

7、对于平面α和不重合的两条直线m、n,下列选项中正确的是(  )

查看答案和解析>>

 

一、选择题

(1)D      (2)C      (3)A      (4)D      (5)A      (6)B

(7)C      (8)A      (9)B      (10)A     (11)B     (12)C

二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.

(13)28    (14)   (15)    (16)2

三、解答题

(17)本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等基础知识和基本技能.满分12分.

解:

                     

   当为第二象限角,且

  

所以=

(18)本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小值以及综合运算能力.满分12分.

   解:

令 

化简为  解得

单调增加;

单调减少.

所以为函数的极大值.

又因为  

所以   为函数在[0,2]上的最小值,为函数

在[0,2]上的最大值.

(19)本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解决实际问题的能力.满分12分.

   解:(Ⅰ)的可能值为-300,-100,100,300.

P(=-300)=0.23=0.008, P(=-100)=3×0.22×0.8=0.096,

P(=100)=3×0.2×0.82=0.384, P(=300)=0.83=0.512,

所以的概率分布为

-300

-100

100

300

P

0.008

0.096

0.384

0.512

根据的概率分布,可得的期望

E=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.

(Ⅱ)这名同学总得分不为负分的概率为P(≥0)=0.384+0.512=0.896.

   解:(Ⅰ)如图1,取AD的中点E,连结PE,则PE⊥AD.

作PO⊥平面在ABCD,垂足为O,连结OE.

根据三垂线定理的逆定理得OE⊥AD,

所以∠PEO为侧面PAD与底面所成的二面角的平面角,

由已知条件可知∠PEO=60°,PE=6,

所以PO=3,四棱锥P―ABCD的体积

VP―ABCD=

(Ⅱ)解法一:如图1,以O为原点建立空间直角坐标系.通过计算可得

P(0,0,3),A(2,-3,0),B(2,5,0),D(-2,-3,0)

所以

因为 所以PA⊥BD.

解法二:如图2,连结AO,延长AO交BD于点F.通过计算可得EO=3,AE=2

所以  Rt△AEO∽Rt△BAD.

        得∠EAO=∠ABD.

        所以∠EAO+∠ADF=90°

   所以  AF⊥BD.

   因为  直线AF为直线PA在平面ABCD 内的身影,所以PA⊥BD.

(21)本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分.

  解:直线的方程为,即 

由点到直线的距离公式,且,得到点(1,0)到直线的距离

同理得到点(-1,0)到直线的距离

   即   

于是得 

解不等式,得   由于所以的取值范围是

(22)本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分.

(Ⅰ)证明:

解出为整数,从而

        

 

       所以数列是公比的等比数列,且首项

(Ⅱ)解:

         

从而  

    

因为,所以


同步练习册答案