(II)已知直线l的方向向量为与椭圆M交于B.C两点.求△ABC面积的最大值. 查看更多

 

题目列表(包括答案和解析)

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右顶点为A(2,0),一条渐近线为y=
1
2
x
,过点B(0,2)且斜率为k的直线l与该双曲线交于不同的两点P,Q.
(I)求双曲线的方程及k的取值范围;
(II)是否存在常数k,使得向量
OP
+
OQ
AB
垂直?如果存在,求k的值;如果不存在,请说明理由.

查看答案和解析>>

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右顶点为A(2,0),一条渐近线为y=
1
2
x
,过点B(0,2)且斜率为k的直线l与该双曲线交于不同的两点P,Q.
(I)求双曲线的方程及k的取值范围;
(II)是否存在常数k,使得向量
OP
+
OQ
AB
垂直?如果存在,求k的值;如果不存在,请说明理由.

查看答案和解析>>

已知曲线C上任意一点到直线的距离与它到点的距离之比是.   
(I)求曲线C的方程;
(II)设B为曲线C与y轴负半轴的交点,问:是否存在方向向量为的直线l,l与曲线C相交于M、N两点,使,且夹角为60°?若存在,求出k值,并写出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

已知双曲线数学公式的右顶点为A(2,0),右焦点为F、O为坐标原点,点F,A到渐近线的距离之比为数学公式,过点B(0,2)且斜率为k的直线l与该双曲线交于不同的两点P,Q.
(I)求双曲线的方程及k的取值范围;
(II)是否存在常数k,使得向量数学公式垂直?如果存在,求k的值;如果不存在,请说明理由.

查看答案和解析>>

已知椭圆C的中心在原点,左焦点为(-
3
,0)
,离心率为
3
2
.设直线l与椭圆C有且只有一个公共点P,记点P在第一象限时直线l与x轴、y轴的交点分别为A、B,且向量
OM
=
OA
+
OB

求:
(I)椭圆C的方程;
(II)|
OM
|
的最小值及此时直线l的方程.

查看答案和解析>>

                                  (一)

一、选择题

1~8:CAAD    BBBD

二、填空题

9、            10、35            11、           12、       

13、          14、10            15、

三、解答题

16、解:(1)由及正弦定理有:    

                                       ……….2分

,且

;                             ……….4分

,则,∴三角形.            ……….6分

(2)∵ ,∴

,而,               ……….8分

,∴,∴.           ……….12分

17解:(1)取的中点的中点连结

平面, .

,

平面.……………………………3分

,四边形是平行四边形, 平面

平面, 平面平面 ………………………………6分

  (2)过,连结

由(1)中的平面平面,所以在面上的射影为,所以就是所求的角.  …………………………………………9分

令正方体的棱长为,所以,所以

与平面所成角的大小的正弦值为.   …………………………12分

18解:(1)表示取出的三个球中数字最大者为3.

①三次取球均出现最大数字为3的概率

②三取取球中有2次出现最大数字3的概率

③三次取球中仅有1次出现最大数字3的概率

.   ……………………………………………………7分

(2)在时, 利用(1)的原理可知:

,(=1,2,3,4)

 的概率分布为:

 

 

=1×+2×+3×+4× = .………………………………………………7分

19、解:(I)由已知抛物线的焦点为

故所求椭圆方程为                                              …………6分

   (II)设直线BC的方程为

代入椭圆方程并化简得                …………9分

又点A到BC的距离为,                                           …………11分

所以△ABC面积的最大值为                                             …………14分

20解:(1)

为增,

所以图象上的点总在图象的上方.    …………………………6分

(2)当

x

(-∞,0)

(0,1)

1

(1,+∞)

F(x)

0

+

F(x)

e

①当x>0时,F(x)在x=1时有最小值e,

②当x<0时,F(x)为减函数,

③当x=0时,∈R.

由①②③,恒成立的的范围是. ……………………………………14分

21解:(1)由

,所以

所以数列为等比数列.    …………………………………………4分

  (2)由(1)有. ……………………………………6分

所以,……,

,累和得

. …8分

因为,………………………………………………9分

所以

,用错位相减法得

,所以

所以

即当为奇数时命题成立.……………………………………………………………11分

所以.即当为偶数时命题成立.

综合以上得.………………………………………………13分

 

 


同步练习册答案