(1)证明:图象上的点总在图象的上方, 查看更多

 

题目列表(包括答案和解析)

 

设函数.

(Ⅰ)当时,求函数的图象在点处的切线方程;

(Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;

(Ⅲ)记为函数的导函数.若,试问:在区间上是否存在)个正数,使得成立?请证明你的结论.

 

 

 

 

 

查看答案和解析>>

设函数

       (Ⅰ)当时,求函数的图象在点处的切线方程;

       (Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;

       (Ⅲ)记为函数的导函数.若,试问:在区间上是否存在)个正数,使得成立?请证明你的结论.

查看答案和解析>>

本大题满分13分)

已知函数,过该函数图象上点

(Ⅰ)证明:图象上的点总在图象的上方;

(Ⅱ)若上恒成立,求实数的取值范围.

 

查看答案和解析>>

(08年哈师大附中理)   已知函数,过该函数图象上任意一点的切线为

(1)       证明:图象上的点总在图象的上方(除去点);

(2)       若上恒成立,求的取值范围。

查看答案和解析>>

设函数f(x)=ax2+lnx.

(Ⅰ)当a=-1时,求函数y=f(x)的图象在点(1,f(1))处的切线方程;

(Ⅱ)已知a<0,若函数y=f(x)的图象总在直线y=-的下方,求a的取值范围;

(Ⅲ)记为函数f(x)的导函数.若a=1,试问:在区间[1,10]上是否存在k(k<100)个正数x1,x2,x3…xk,使得成立?请证明你的结论.

查看答案和解析>>

                                  (一)

一、选择题

1~8:CAAD    BBBD

二、填空题

9、            10、35            11、           12、       

13、          14、10            15、

三、解答题

16、解:(1)由及正弦定理有:    

                                       ……….2分

,且

;                             ……….4分

,则,∴三角形.            ……….6分

(2)∵ ,∴

,而,               ……….8分

,∴,∴.           ……….12分

17解:(1)取的中点的中点连结

平面, .

,

平面.……………………………3分

,四边形是平行四边形, 平面

平面, 平面平面 ………………………………6分

  (2)过,连结

由(1)中的平面平面,所以在面上的射影为,所以就是所求的角.  …………………………………………9分

令正方体的棱长为,所以,所以

与平面所成角的大小的正弦值为.   …………………………12分

18解:(1)表示取出的三个球中数字最大者为3.

①三次取球均出现最大数字为3的概率

②三取取球中有2次出现最大数字3的概率

③三次取球中仅有1次出现最大数字3的概率

.   ……………………………………………………7分

(2)在时, 利用(1)的原理可知:

,(=1,2,3,4)

 的概率分布为:

 

 

=1×+2×+3×+4× = .………………………………………………7分

19、解:(I)由已知抛物线的焦点为

故所求椭圆方程为                                              …………6分

   (II)设直线BC的方程为

代入椭圆方程并化简得                …………9分

又点A到BC的距离为,                                           …………11分

所以△ABC面积的最大值为                                             …………14分

20解:(1)

为增,

所以图象上的点总在图象的上方.    …………………………6分

(2)当

x

(-∞,0)

(0,1)

1

(1,+∞)

F(x)

0

+

F(x)

e

①当x>0时,F(x)在x=1时有最小值e,

②当x<0时,F(x)为减函数,

③当x=0时,∈R.

由①②③,恒成立的的范围是. ……………………………………14分

21解:(1)由

,所以

所以数列为等比数列.    …………………………………………4分

  (2)由(1)有. ……………………………………6分

所以,……,

,累和得

. …8分

因为,………………………………………………9分

所以

,用错位相减法得

,所以

所以

即当为奇数时命题成立.……………………………………………………………11分

所以.即当为偶数时命题成立.

综合以上得.………………………………………………13分

 

 


同步练习册答案