.是假命题.: 查看更多

 

题目列表(包括答案和解析)

12、命题p:{2}∈{1,2,3},q:{2}⊆{1,2,3},则对复合命题的下述判断:①“p或q”为真;②“p或q”为假;③“p且q”为真;④“p且q”为假;⑤“非p”为真;⑥“非q”为假.其中判断正确的序号是
①④⑤⑥
.(填上你认为正确的所有序号)

查看答案和解析>>

命题p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立,q:函数f(x)=(3-2a)x是增函数,若p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

命题p:“x2=1”是“x=-1”的充分不必要条件
命题q:已知向量
a
=(1,1,0),
b
=(-1,0,2)
k
a
+
b
与2
a
-
b
互相垂直的充要条件是 k=
7
5
,则下列结论:
①“p或q”为假;②“p且q”为真;③p真q假;④p假q真.
则正确结论的序号为
 
(把你认为正确的结论都写上).

查看答案和解析>>

12、命题p:?n∈R,?m∈R,m•n=m,命题q:?n∈R,?m∈R,m2<n.则p∨q是
命题(选填“真”或“假”)

查看答案和解析>>

4、命题“在△ABC中,若∠C是直角,则∠B一定是锐角.”的证明过程如下:
假设∠B不是锐角,则∠B是直角或钝角,即∠B≥90°,
所以∠A+∠B+∠C≥∠A+90°+90°>180°,
这与三角形的内角和等于180°矛盾
所以上述假设不成立,所以∠B一定是锐角.
本题采用的证明方法是(  )

查看答案和解析>>

一、选择题(本大题共8小题,每小题5分,共40分)

1.B   2. B   3. C   4. C   5.D   6. B   7.C   8. B.

 

二、填空题(本大题共6小题,每小题5分,共30分)

9. 6,17,28,39,40,51,62,73 .  10. .     11. 0. 

12. 20.   13. .     14. .    15. .

三、解答题(本大题共6小题,共80分)

16.(本小题满分12分)

解:(Ⅰ),即

,∴.∵,∴

(Ⅱ)mn

|mn|

,∴,∴.从而

∴当=1,即时,|mn|取得最小值

所以,|mn|

 

17.(本小题满分12分)

解:(1)设掷两颗正方体骰子所得的点数记为(x,y),其中

则获一等奖只有(6,6)一种可能,其概率为:;   

获二等奖共有(6,5)、(5,6)、(4,6)、(6,4)、(5,5)共5种可能,其概率为:

设事件A表示“同行的三位会员一人获一等奖、两人获二等奖”,则有:

P(A)=;                        

ξ

30-a

-70

0

30

p

(2)设俱乐部在游戏环节收益为ξ元,则ξ的可能取值为,,0,,…7分

其分布列为:

 

 

 

 

则:Eξ=

由Eξ=0得:a=310,即一等奖可设价值为310 元的奖品。      

 

18.(本小题满分14分)

证明:(1)取EC的中点是F,连结BF,

则BF//DE,∴∠FBA或其补角即为异面直线DE与AB所成的角.

在△BAF中,AB=,BF=AF=.∴

∴异面直线DE与AB所成的角的余弦值为.………5分

(2)AC⊥平面BCE,过C作CG⊥DE交DE于G,连AG.

可得DE⊥平面ACG,从而AG⊥DE

∴∠AGC为二面角A-ED-B的平面角.

在△ACG中,∠ACG=90°,AC=4,CG=

.∴

∴二面角A-ED-B的的正弦值为

(3)

∴几何体的体积V为16.

 

方法二:(坐标法)(1)以C为原点,以CA,CB,CE所在直线为x,y,z轴建立空间直角坐标系.

则A(4,0,0),B(0,4,0),D(0,4,2),E(0,0,4)

,∴

∴异面直线DE与AB所成的角的余弦值为

(2)平面BDE的一个法向量为

设平面ADE的一个法向量为

从而,

,则,

∴二面角A-ED-B的的正弦值为

(3),∴几何体的体积V为16.

 

19.(本小题满分14分)

【解】(Ⅰ)法1:依题意,显然的斜率存在,可设直线的方程为

整理得 . ①   

    设是方程①的两个不同的根,

    ∴,   ②                 

    且,由是线段的中点,得

    ,∴

    解得,代入②得,的取值范围是(12,+∞).

    于是,直线的方程为,即     

    法2:设,则有

        

    依题意,,∴.              

的中点,

,从而

又由在椭圆内,∴

的取值范围是.                          

直线的方程为,即.       

(Ⅱ)∵垂直平分,∴直线的方程为,即

代入椭圆方程,整理得.  ③         

又设的中点为,则是方程③的两根,

到直线的距离,故所求的以线段的中点为圆心且与直线相切的圆的方程为:

20.(本小题满分14分)

(Ⅰ)解:由题意得,,所以=

(Ⅱ)证:令,,则=1

所以=(1),=(2),

(2)―(1),得=,

化简得(3)

(4),(4)―(3)得

在(3)中令,得,从而为等差数列

(Ⅲ)记,公差为,则=

,

,当且仅当,即时等号成立

 

21.(本小题满分14分)

解:(1)由题意,≥0在上恒成立,即

         ∵θ∈(0,π),∴.故上恒成立,

         只须,即,只有.结合θ∈(0,π),得

(2)由(1),得

在其定义域内为单调函数,

或者在[1,+∞)恒成立.

 等价于,即

     而 ,(max=1,∴

等价于,即在[1,+∞)恒成立,

∈(0,1],

综上,m的取值范围是

(3)构造

时,,所以在[1,e]上不存在一个,使得成立.

时,

因为,所以,所以恒成立.

上单调递增,,只要

解得.故的取值范围是

 

 


同步练习册答案