(2)当x>0时.证明不等式 查看更多

 

题目列表(包括答案和解析)

(08年银川一中二模) 关于函数 (x≠0)有下列命题:(1)函数图象关于Y轴对称;(2)当x>0时,函数是增函数,当x<0时,函数是减函数;(3)函数的最小值为lg2;(4)函数是周期函数。其中正确命题的序号是__________

查看答案和解析>>

已知f(x)是定义在R上的奇函数,且当x>0,f(x)=ex+a,f(x)R上是单调函数,则实数a的最小值是(  )

(A)1 (B)-1

(C)-2 (D)2

 

查看答案和解析>>

设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有恒成立,则不等式的解集是

(A) (-2,0) ∪(2,+∞)    (B) (-2,0) ∪(0,2)   (C) (-∞,-2)∪(2,+∞)    (D) (-∞,-2)∪(0,2)

查看答案和解析>>

设数列的前项和为,已知(n∈N*).

(Ⅰ)求数列的通项公式;

(Ⅱ)求证:当x>0时,

(Ⅲ)令,数列的前项和为.利用(2)的结论证明:当n∈N*且n≥2时,.

 

查看答案和解析>>

定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)f(b),

求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0;

(3)证明:f(x)是R上的增函数;(4)若f(x)·f(2x-x2)>1,求x的取值范围。

查看答案和解析>>

一、选择题:本大题共8题,每小题5分,共40分。

题号

1

2

3

4

5

6

7

8

 

 

答案

D

B

D

B

C

A

B

B

 

 

二、填空题:本大题共7小题,每小题5分,共30分。

9.55     10.-3     11.    12.      13.1     14.2    15.

三、解答题:本大题共6小题,共80分。解答应写出文字说明,证明过程或演算步骤。

16.(本小题满分12分)

已知向量,,,设.

(I)求函数的最小正周期。(II),求的值域。

解:(I)因为

                 ………………………………………………………4分

            所以函数的最小正周期.……………………………………6分

(II)因为,

………………………………………………………………………8分

所以……………………………………………………………10分

所以。 ……………………………………………………………… 12分

 

17.(本小题满分12分)

(1); ………………………………………………………4分

         (2); …………………………………………………………… 8分

         (3)表面积S=48. ……………………………………………………………… 12分

 

18.(本小题满分14分)

解答(1)x=1+1+1=3  或者x=-1-1-1=-3---------(4分)

 (2)

i

I=3

I=5

P

(0.53)+ (0.53)=0.25

1-0.25=0.75

 

 

 

Ei=3×0.25+5×0.75=4.5---------------(8分)

 (3)

ξ

ξ=1

ξ=3

P

18×0.55=

6×0.55+2×0.53=

 

 

 

 

 

Eξ=1×+3×=----------(14分)

 

所有情况列表(仅供参考)

ξ

x

 

x

 

ξ=1

-1

-1-1+1-1+1

+1

-1-1+1-1+1

 

-1-1+1+1-1

 

-1-1+1+1-1

 

-1+1-1-1+1

 

-1+1-1-1+1

 

-1+1-1+1-1

 

-1+1-1+1-1

 

-1+1+1-1-1

 

-1+1+1-1-1

 

+1-1-1-1+1

 

+1-1-1-1+1

 

+1-1-1+1-1

 

+1-1-1+1-1

 

+1-1+1-1-1

 

+1-1+1-1-1

 

+1+1-1-1-1

 

+1+1-1-1-1

ξ=3

-3

+1-1-1-1-1

+3

-1+1+1+1+1

 

-1+1-1-1-1

 

+1-1+1+1+1

 

-1-1+1-1-1

 

+1+1-1+1+1

 

-1-1-1

 

+1+1+1

 

19、(本小题满分14分)

 解:(I)∵  ∴  ∴

………3分

………………………………4分

  ∴

  ∴…………………………………………6分

……………………………………………………………………7分

(II)∵ ………………………………………………………8分 

…………………………………………………………………9分

     ∴…………………………………………………………10分

     由……………………12分

     …………………………………………………………14分

∴直线EF与抛物线相切。

20.(本小题满分14分)

解:(1)∵x,y

为恒为零

显然

又函数为单调函数,可得为等差数列

  从而---------------------------------------------------------(6分)

   (2)∵

是递增数列。--------------------------------(12分)

时, ------------------------------------------------------(14分)

 

21、(本小题满分14分)

解:(1)由已知得函数,且

又∵

∴函数的单调递增区间是

(2)设,

  (5分)

上连续,内是增函数。(7分)

  (8分)

  (9分)

    (10分)

(3)方法一由(1)知,设

……12分

 (14分)

内是增函数。

 

 


同步练习册答案