方法一:联立①②消去y.得x2+x-x02-2=0. 设Q ∵M是PQ的中点. 查看更多

 

题目列表(包括答案和解析)

如图,直线与抛物线交于两点,与轴相交于点,且.

(1)求证:点的坐标为

(2)求证:

(3)求的面积的最小值.

【解析】设出点M的坐标,并把过点M的方程设出来.为避免对斜率不存在的情况进行讨论,可以设其方程为,然后与抛物线方程联立消x,根据,即可建立关于的方程.求出的值.

(2)在第(1)问的基础上,证明:即可.

(3)先建立面积S关于m的函数关系式,根据建立即可,然后再考虑利用函数求最值的方法求最值.

 

查看答案和解析>>

已知直线某学生做如下变形,由直线与双曲线联立消y得形如的方程,当A=0时该方程有一解;当A≠0时,恒成立,若该生计算过程正确,则实数m的取值范围是            .

查看答案和解析>>

已知直线y=k(x-3)与双曲线
x2
m
-
y2
27
=1
,有如下信息:联立方程组
y=k(x-3)
x2
m
-
y2
27
=1
消去y后得到方程Ax2+Bx+C=0,分类讨论:
(1)当A=0时,该方程恒有一解;
(2)当A≠0时,△=B2-4AC≥0恒成立.在满足所提供信息的前提下,双曲线离心率的取值范围是(  )
A、[9,+∞)
B、(1,9]
C、(1,2]
D、[2,+∞)

查看答案和解析>>

椭圆的左、右焦点分别为,一条直线经过点与椭圆交于两点.

⑴求的周长;

⑵若的倾斜角为,求的面积.

【解析】(1)根据椭圆的定义的周长等于4a.

(2)设,则,然后直线l的方程与椭圆方程联立,消去x,利用韦达定理可求出所求三角形的面积.

 

查看答案和解析>>

已知直线y=k(x-3)与双曲线
x2
m
-
y2
27
=1
,有如下信息:联立方程组
y=k(x-3)
x2
m
-
y2
27
=1
消去y后得到方程Ax2+Bx+C=0,分类讨论:
(1)当A=0时,该方程恒有一解;
(2)当A≠0时,△=B2-4AC≥0恒成立.在满足所提供信息的前提下,双曲线离心率的取值范围是(  )
A.[9,+∞)B.(1,9]C.(1,2]D.[2,+∞)

查看答案和解析>>


同步练习册答案