通过对数“零 的意义的探讨.进一步理解正数和负数的概念, 查看更多

 

题目列表(包括答案和解析)

对于二次函数y=x2-3x+2和一次函数y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.现有点A(2,0)和抛物线E上的点B(-1,n),请完成:
(1)当t=2时,求抛物线y=t(x2-3x+2)+(1-t)(-2x+4)的顶点坐标.
(2)判断点A是否在抛物线E上,并求出n的值.
(3)通过(2)演算可知,对于t取任何不为零的实数,抛物线E总过定点,写出定点坐标.
(4)二次函数y=-3x2+5x+2是二次函数y=x2-3x+2和一次函数y=-2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.

查看答案和解析>>

根据图示,探讨回答下列问题:
(1)C、D两点间的距离是多少?
(2)A、B两点间的距离是多少?
(3)A、D两点间的距离是多少?
(4)通过以上三题的探讨:你能发现在数轴上任意两点E(在数轴上表示的数为a)、F(在数轴上表示的数为b),这两点之间的距离是多少?
精英家教网

查看答案和解析>>

如果a,b是任意两个不等于零的数,定义φ运算如下(其余符号意义如常):aφb=
a2b
,那么[(1φ2)φ3]+[1φ(2φ3)]的值是
 

查看答案和解析>>

4、下面说法中,不正确的是(  )

查看答案和解析>>

34、关于图形变化的探讨:
(1)①例题1.如图1,AB是⊙O的直径,直线l与⊙O有一个公共点C,过A、B分别作l的垂线,垂足为E、F,则EC=CF.
②上题中,当直线l向上平行移动时,与⊙O有了两个交点C1、C2,其它条件不变,如图2,经过推证,我们会得到与原题相应的结论:EC1=C2F.
③把直线1继续向上平行移动,使弦C1C2与AB交于点P(P不与A,B重合).在其它条件不变的情况下,请你在图3的圆中将变化后的图形画出来,标好对应的字母,并写出与①②相应的结论等式.判断你写的结论是否成立,若不成立,说明理由,若成立,给以证明.结论
EC1=C2F
.证明结论成立或说明不成立的理由
(2)①例题2.如图4,BC是⊙O的直径.直线1是过C点的切线.N是⊙O上一点,直线BN交1于点M.过N点的切线交1于点P,则PM2=PC2
②把例题2中的直线1向上平行移动,使之与⊙O相交,且与直线BN交于B、N两点之间.其它条件仍然不变,请你利用图5的圆把变化后的图形画出来,标好相应的字母,并写出与①相应的结论等积式,判断你写的结论是否成立,若不成立,说明理由,若成立,给以证明.结论
PM2=PC1•PC2
.证明结论成立或说明不成立的理由:
(3)总结:请你通过(1)、(2)的事实,用简练的语言,总结出某些几何图形的一个变化规律
在某些几何图形中,平行移动某条直线,有些几何关系保持不变.

查看答案和解析>>


同步练习册答案