#在数轴上有三个点A.B.C如图所示.请回答: (1)把点A向右移动7个单位后.A.B.C三个点表示的数那个最小.是多少? (2)把B点向左移动5个单位后.这是A点所表示的数比B所表示的数大多少? (3)如果让A表示的数最大.则A点应该怎样移动.至少移动几个单位? 查看更多

 

题目列表(包括答案和解析)

如图,在平面直角坐标系中,有点A(1,6)、点B (6,1)、点C(1,1)三点.
(1)若点A在函数y=
m
x
(x>0)的图象上.
①求m的值及直线AB的解析式;
②求三角形OAB的面积;
③在y轴是否存在一点P使△OCP为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.
④如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的坐标.
(2)若函数y=
m
x
(x>0)的图象与△ABC有公共点,求m的取值范围.

查看答案和解析>>

如图,已知抛物线y=数学公式x2+bx+c(b,c是常数,且c<0)与x轴分别交于点A、B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0).
(1)b=______,点B的横坐标为______(上述结果均用含c的代数式表示);
(2)连接BC,过点A作直线AE∥BC,与抛物线y=数学公式x2+bx+c交于点E,点D是x轴上的一点,其坐标为(2,0).当C,D,E三点在同一直线上时,求抛物线的解析式;
(3)在(2)条件下,点P是x轴下方的抛物线上的一个动点,连接PB,PC,设所得△PBC的面积为S.
①求S的取值范围;
②若△PBC的面积S为整数,则这样的△PBC共有______个.

查看答案和解析>>

如图,已知抛物线y=x2+bx+c(b,c是常数,且c<0)与x轴分别交于点A、B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0).
(1)b=______,点B的横坐标为______(上述结果均用含c的代数式表示);
(2)连接BC,过点A作直线AE∥BC,与抛物线y=x2+bx+c交于点E,点D是x轴上的一点,其坐标为(2,0).当C,D,E三点在同一直线上时,求抛物线的解析式;
(3)在(2)条件下,点P是x轴下方的抛物线上的一个动点,连接PB,PC,设所得△PBC的面积为S.
①求S的取值范围;
②若△PBC的面积S为整数,则这样的△PBC共有______个.

查看答案和解析>>

精英家教网已知:如图所示,反比例函数y=
1
x
与直线y=-x+2只有一个公共点P,则称P为切点.
(1)若反比例函数y=-
k
x
与直线y=kx+6只有一个公共点M,求当k<0时两个函数的解析式和切点M的坐标;
(2)设(1)问结论中的直线与x轴、y轴分别交于A、B两点.将∠ABO沿折痕AB翻折,设翻折后的OB边与x轴交于点C.
①直接写出点C的坐标;
②在经过A、B、C三点的抛物线的对称轴上是否存在一点P,使以P、O、M、C为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

已知:如图所示,反比例函数y=数学公式与直线y=-x+2只有一个公共点P,则称P为切点.
(1)若反比例函数y=数学公式与直线y=kx+6只有一个公共点M,求当k<0时两个函数的解析式和切点M的坐标;
(2)设(1)问结论中的直线与x轴、y轴分别交于A、B两点.将∠ABO沿折痕AB翻折,设翻折后的OB边与x轴交于点C.
①直接写出点C的坐标;
②在经过A、B、C三点的抛物线的对称轴上是否存在一点P,使以P、O、M、C为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案